首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of high‐precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA‐MC‐ICP‐MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA‐MC‐ICP‐MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in‐house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured‐corrected Ca isotope ratio values (43Ca/44Ca and 42Ca/44Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured‐corrected Pb isotope ratios (207Pb/206Pb and 208Pb/206Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)‐ICP‐MS instrument. The use of LA‐MC‐ICP‐MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) was applied to the certification of Pb in four levels of NIST blood SRM, 955a. This standard reference material (SRM) represents a significant improvement over the previous blood reference material and will greatly aid method development. The lowest level, 47.76 ng/g Pb was determined with analysis uncertainty (95% CI, ID-ICP-MS uncertainties) of less than 1% and the highest level, 517.9 ng/g Pb to 0.3%. Uncertainty in the lowest level was due to sample inhomogeneity and variability in the analytical blank as the RSD on ratio measurements was typically better than 0.2%. Properly applied isotope dilution coupled with careful isotope ratio measurements on the ICP-MS offers precision and accuracy for blood Pb analyses beyond what is currently obtainable with routine methods.  相似文献   

3.
The precision of isotopic measurements of Pb by thermal ionization mass spectrometry (TIMS) is limited by the fact that this element does not possess an invariant isotope ratio that can be used for the correction of mass fractionation by internal normalization. Multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) can overcome this limitation, because with plasma ionization, elements with overlapping mass ranges are thought to display identical mass discrimination. With respect to Pb, this can be exploited by the addition of Tl to the sample solutions; the mass discrimination factor obtained for Tl can then be used for the correction of the measured Pb isotope ratios. In this article we present the results of a detailed study that investigates the accuracy and precision of such an external correction technique for mass discrimination based upon the results of multiple analyses of a mixed standard solution of NIST SRM-981 Pb and SRM-997 Tl. Our data indicate that normalization of the Pb isotope ratios to the certified isotopic composition of SRM-997 Tl produces Pb isotopic results that are significantly lower than recently published reference values by TIMS. This systematic offset can be eliminated by renormalization of the Pb data to a different Tl isotopic composition to obtain an empirically determined mass discrimination factor for Pb that generates accurate results. It is furthermore shown that a linear law is least suited for the correction of mass discrimination, whereas a power or exponential law function provide significantly more accurate and precise results. In detail, it appears that a power law may provide the most appropriate correction procedure, because the corrected Pb isotope ratios display less residual correlations with mass discrimination compared to the exponentially corrected data. Using an exponential or power law correction our results, obtained over a period of over seven months, display a precision (2σ) of better than 60 parts per million (ppm) for 208Pb/206Pb and 207Pb/206Pb and of better than 350 ppm for 206Pb/204Pb, 207Pb/204Pb/204Pb, and 208Pb/204Pb. This represents a significant improvement compared to conventional TIMS techniques and demonstrates the potential of MC-ICPMS for routine, high-precision measurements of Pb isotopic compositions.  相似文献   

4.
We measured the concentrations of Pb and its isotope ratios in coconmittantly obtained tap water and plumbing materials by inductively coupled mass spectrometry (ICP-MS). The Pb concentrations were determined by external calibration with209Bi as an internal standard. Isotope ratios were measured and mass discrimination corrected by normalization to NIST SRM-981 (common lead isotopic standard). Student/s t-test was used to compare the isotopic ratios of206Pb/207Pb,206Pb/208Pb, and207Pb/208Pb in the tap water with those in various plumbing materials. The comparisons revealed that the source of Pb in most of the tap water samples was derived from copper pipe or solder.  相似文献   

5.
Microwave digestion and isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-SFMS) has been applied to the determination of Pb in rice flour. In order to achieve highly precise determination of low concentrations of Pb, the digestion blank for Pb was reduced to 0.21 ng g−1 after optimization of the digestion conditions, in which 20 mL analysis solution was obtained after digestion of 0.5 g rice flour. The observed value of Pb in a non-fat milk powder certified reference material (CRM), NIST SRM 1549, was 16.8 ± 0.8 ng g−1 (mean ± expanded uncertainty, k = 2; n = 5), which agreed with the certified value of 19 ± 3 ng g−1 and indicated the effectiveness of the method. Analytical results for Pb in three brown rice flour CRMs, NIST SRM 1568a, NIES CRM 10-a, and NIES CRM 10-b, were 7.32 ± 0.24 ng g−1 (n = 5), 1010 ± 10 ng g−1 (n = 5), and 1250 ± 20 ng g−1 (n = 5), respectively. The concentration of Pb in a candidate white rice flour reference material (RM) sample prepared by the National Metrology Institute of Japan (NMIJ) was observed to be 4.36 ± 0.28 ng g−1 (n = 10 bottles). Figure Digestion blank of Pb was carefully reduced to approximately 0.2 ng g-1 which permitted the highly precise determination of Pb at low ng g-1 level in foodstuff samples by ID-SFMS  相似文献   

6.
An analytical protocol for rapid and reliable laser ablation-quadrupole (LA-Q)- and multi-collector (MC-) inductively coupled plasma-mass spectrometry (ICP-MS) analysis of Pb isotope ratios (207Pb/206Pb and 208Pb/206Pb) in peats and lichens is developed. This technique is applicable to source tracing atmospheric Pb deposition in biomonitoring studies and sample screening. Reference materials and environmental samples were dry ashed and pressed into pellets for introduction by laser ablation. No binder was used to reduce contamination. LA-MC-ICP-MS internal and external precisions were <1.1% and <0.3%, respectively, on both 207Pb/206Pb and 208Pb/206Pb ratios. LA-Q-ICP-MS internal precisions on 207Pb/206Pb and 208Pb/206Pb ratios were lower with values for the different sample sets <14.3% while external precisions were <2.9%. The level of external precision acquired in this study is high enough to distinguish between most modern Pb sources. LA-MC-ICP-MS measurements differed from thermal ionisation mass spectrometry (TIMS) values by 1% or less while the accuracy obtained using LA-Q-ICP-MS compared to solution MC-ICP-MS was 3.1% or better using a run bracketing (RB) mass bias correction method. Sample heterogeneity and detector switching when measuring 208Pb by Q-ICP-MS are identified as sources of reduced analytical performance.  相似文献   

7.
The analysis of 204Pb, 206Pb, 207Pb and 208Pb isotope ratios for environmental Pb markers (leaded gasoline, air-borne particulate matter, house window dust) and hair of children was undertaken by the routine quadrupole inductively coupled argon plasma mass spectrometry (Q-ICP-MS). Hair samples collected from 10-year-old children living in Krakow in 1995 and 35 randomly selected children, aged 11, both sexes were included in the current study. Air-borne particles were collected by PM-2.5 (an aerodynamic diameter dac <2.5 μm) and PM-10 (fraction with an dac <10 μm) samplers in the proximity of steel factories situated near Krakow. Imprecision of routine estimations was approximately 0.6–0.7% or less, and was the lowest for the 207Pb/208Pb ratio (approx. 0.2%). These conditions were sufficient to distinguish Pb from air-borne dust from that in gasoline or window dust. No differences were found between Pb in PM-2.5 and PM-10 particles. The associations of the Pb in the these environmental sources and that in hair of children were discussed. The relationships of the Pb isotope ratios and other parameters related to environmental pollution were also analyzed. The analysis of distribution of the 207Pb/208Pb ratio in the hair of children, provided some evidence of the fact that hair lead of approximately 20% of the investigated population could arise from gasoline, while the Pb from air-borne dust and remaining sources can be attributed to approximately 80% of the population.  相似文献   

8.
将193nm准分子纳秒激光与四级杆电感耦合等离子体质谱联用,测量了国际参照物玻璃中Pb同位素丰度比。通过剥蚀NIST612,USGS和MPI-DING玻璃,探讨了利用激光剥蚀电感耦合等离子体质谱直接测定固体样品铅同位素比值的精密度及其适用范围。通过扣除Ar载气中204Hg对204Pb的同量异位素干扰,采用内标法和外标法校正LA-ICP-MS仪器的质量歧视效应,获得的206Pb/204Pb、207Pb/204Pb、208Pb/204Pb同位素比值测量的相对误差小于±1.2%,207Pb/206Pb、208Pb/206Pb同位素比值测定的相对误差小于±0.8%。对比结果表明,采用内标法校正的结果更接近真实值。测定的Pb同位素比值的精密度与样品中Pb含量密切相关,对Pb含量大于40μg/g的样品,同位素比值206Pb/204Pb、207Pb/204Pb、208Pb/204Pb的RSD在1.0%以内,207Pb/206Pb、208Pb/206Pb的RSD在0.5%以内。大气颗粒物样品中Pb含量很高,采用LA-ICP-MS测定Pb同位素比值,能够鉴别污染来源,满足示踪的要求。  相似文献   

9.
Ultrasonic slurry sampling electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (USS-ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in coal fly ash samples. Thioacetamide (TAC) was used as the modifier. Since the sensitivities of the elements studied in coal fly ash slurry and aqueous solution were quite different, isotope dilution method was used for the determination of Cd, Hg and Pb in these coal fly ash samples. The isotope ratios of each element were calculated from the peak areas of each injection peak. This method has been applied to the determination of Cd, Hg and Pb in NIST SRM 1633a coal fly ash reference material and a coal fly ash sample collected from Kaohsiung area. Analysis results of reference sample NIST SRM 1633a coal fly ash agreed satisfactorily with the certified values. The other sample determined by isotope dilution and method of standard additions was agreed satisfactorily. Precision was better than 6% for most of the determinations and accuracy was better than 4% with the USS-ETV-ID-ICP-MS method. Detection limits estimated from standard addition curves were in the range of 24–58, 6–28 and 108–110 ng g−1 for Cd, Hg and Pb, respectively.  相似文献   

10.
Despite the large number of successful applications of laser ablation, elemental and isotopic fractionation coupled to inductively coupled plasma mass spectrometry (ICP-MS) remain as the main limitations for many applications of this technique in the fields of analytical chemistry and Earth Sciences. A substantial effort has been made to control such fractionations, which are well-established features of nanosecond laser ablation systems. Technological advancements made over the past decade now allow the ablation of solids by femtosecond laser pulses in the deep ultraviolet (UV) region at wavelengths less than 200 nm. Here the use of femtosecond laser ablation and its effects on elemental and isotopic fractionation is investigated. The Pb/U system is used to illustrate elemental fractionation and stable Fe isotopes are used to illustrate isotopic fractionation. No elemental fractionation is observed beyond the precision of the multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements. Without a matrix match between standard and sample, elemental fractionation is absent even when using different laser ablation protocols for standardization and samples (spot versus raster). Furthermore, we found that laser ablation-induced isotope ratio drifts, commonly observed during nanosecond laser ablation, are undetectable during ultraviolet femtosecond laser ablation. So far the precision obtained for Fe isotope ratio determinations is 0.1‰ (2 standard deviation) for the 56Fe/54Fe ratio. This is close to that obtainable by solution multiple-collector inductively coupled plasma mass spectrometry. The accuracy of the results appears to be independent of the matrix used for standardization. The resulting smaller particle sizes reduce fractionation processes. Femtosecond laser ablation carries the potential to solve some of the difficulties encountered during the two prior decades since the introduction of laser ablation.  相似文献   

11.
Two reference materials, at relatively low and high concentrations (GBW08404 and GBW08405), for analysis of the mass fractions of Cd, Cr, Hg and Pb in polypropylene were developed. The reference materials were prepared by doping blank polypropylene base material with Cd, Cr, Hg and Pb in the form of oxides, salts or pigments. Homogeneity and stability studies were performed by inductively coupled plasma mass spectrometry. The certification of the four analytes was carried out by isotope-dilution mass spectrometry (IDMS) with microwave-assisted digestion. Combined uncertainties were calculated from the IDMS uncertainty evaluation budget and the uncertainty of the homogeneity. The mass fractions of Cd, Cr, Hg and Pb of the two certified reference materials (CRMs) were from 8 to 1,000 mg kg−1. The two samples were also used in an interlaboratory comparison scheme in which National Institute of Metrology, China, National Metrological Institute of Japan and Korea Research Institute of Standards and Science participated. The agreement of the comparison results proved that the certification procedure of the CRMs is valid and that the certified values of Cd, Cr, Hg and Pb are accurate and reliable.  相似文献   

12.
An on-line Hg reduction technique using stannous chloride as the reductant was applied for accurate and precise mercury isotope ratio determinations by multi-collector (MC)-ICP/MS. Special attention has been paid to ensure optimal conditions (such as acquisition time and mercury concentration) allowing precision measurements good enough to be able to significantly detect the anticipated small differences in Hg isotope ratios in nature. Typically, internal precision was better than 0.002% (1 RSE) on all Hg ratios investigated as long as approximately 20 ng of Hg was measured with a 10-min acquisition time. Introducing higher amounts of mercury (50 ng Hg) improved the internal precision to <0.001%. Instrumental mass bias was corrected using 205Tl/203Tl correction coupled to a standard-sample bracketing approach. The large number of data acquired allowed us to validate the consistency of our measurements over a one-year period. On average, the short-term uncertainty determined by repeated runs of NIST SRM 1641d Hg standard during a single day was <0.006% (1 RSD) for all isotope pairs investigated (202Hg/198Hg, 202Hg/199Hg, 202Hg/200Hg, and 202Hg/201Hg). The precision fell to <0.01% if the long-term reproducibility, taken over 11 months (over 100 measurements), was considered. The extent of fractionation has been investigated in a series of sediments subject to various Hg sources from different locations worldwide. The ratio 202Hg/198Hg expressed as δ values (per mil deviations relative to NIST SRM 1641d Hg standard solution) displayed differences from +0.74 to −4.00‰. The magnitude of the Hg fractionation per amu was constant within one type of sample and did not exceed 1.00‰. Considering all results (the reproducibility of Hg standard solutions, reference sediment samples, and the examination of natural samples), the analytical error of our δ values for the overall method was within ±0.28‰ (1 SD), which was an order of magnitude lower than the extent of fractionation (4.74‰) observed in sediments. This study confirmed that analytical techniques have reached a level of long-term precision and accuracy that is sufficiently sensitive to detect even small differences in Hg isotope ratios that occur within one type of samples (e.g., between different sediments) and so far have unequivocally shown that Hg isotope ratios in sediments vary within approximately 5‰.  相似文献   

13.
Hintelmann H  Lu S 《The Analyst》2003,128(6):635-639
Variations in Hg isotope ratios in cinnabar ores obtained from different countries were detected by high precision isotope ratio measurements using multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Values of delta198/202Hg varied from 0.0-1.3 percent per thousand relative to a NIST SRM 1641d Hg solution. The typical external uncertainty of the delta values was 0.06 to 0.26 percent per thousand. Hg was introduced into the plasma as elemental Hg after reduction by sodium borohydride. A significant fractionation of lead isotopes was observed during the simultaneous generation of lead hydride, preventing normalization of the Hg isotope ratios using the measured 208/206Pb ratio. Hg ratios were instead corrected employing the simultaneously measured 205/203T1 ratio. Using a 10 ng ml(-1) Hg solution and 10 min of sampling, introducing 60 ng of Hg, the internal precision of the isotope ratio measurements was as low as 14 ppm. Absolute Hg ratios deviated from the representative IUPAC values by approximately 0.2% per u. This observation is explained by the inadequacy of the exponential law to correct for mass bias in MC-ICP-MS measurements. In the absence of a precisely characterized Hg isotope ratio standard, we were not able to determine unambiguously the absolute Hg ratios of the ore samples, highlighting the urgent need for certified standard materials.  相似文献   

14.
Uranium isotope ratio U 234/238 can be measured by commercial high-performance inductively coupled plasma mass spectrometry (ICP-MS) with good precision and accuracy (relative standard deviation RSD<2%). The method is based on acquiring the data using a peak jump mode and a collecting signal 10 times longer for low abundance isotopes. Uranium isotope standards U-005 to U-200 from the National Bureau of Standards (NBS) were used for method development. The optimum uranium concentration range for analysis for dissolved samples is from 50 to 200 g l–1.  相似文献   

15.
An inductively coupled plasma quadrupole mass spectrometer equipped with an octopole collision/reaction cell was used for the determination of cadmium in oyster tissue samples using isotope dilution inductively coupled plasma mass spectrometry. The oyster samples in question were found to contain Mo and Zr. In our feasibility study on a Cd standard solution (10 μg L−1) containing a matrix of Mo (1000 μg L−1) or Zr (250 μg L−1), the potentially interfering species (MoO+ or ZrO+) present at the analytical mass of cadmium concerned (m/z 111, 112 or 114) was reduced effectively through the use of a mixture of He and H2 as cell gases. The accuracy of the method was validated by the analysis of a matrix-matched certified reference material (CRM) of NIST SRM 1566b. The CRM was analyzed under the standard and He/H2 cell modes. Two isotopic pairs of 114Cd/111Cd and 112Cd/111Cd were selected for quantification purposes. The recoveries of cadmium obtained in the two cell modes were compared with each other. The validated method was applied successfully to the APMP.QM-P5 pilot study for international comparability purposes.  相似文献   

16.
The characterisation of a laboratory quality control material (QCM) for dibutyltin (DBT) and tributyltin (TBT) in sewage sludge is described. The reference values were determined by the use of two different types of isotope-dilution mass spectrometry: gas chromatography–mass spectrometry and gas chromatography–inductively coupled plasma mass spectrometry. To avoid possible analytical errors such as non-quantitative extraction and species degradation during sample preparation, different extraction methods were tested (microwave- and ultrasound-assisted extraction and mechanical stirring). The reference values were based on the unweighted means of results from the homogenisation and characterisation studies. The reference values obtained were 1,553 ± 87 and 534 ± 38 ng Sn g-1 for DBT and TBT, respectively. In the uncertainty budget estimation, the sample inhomogeneity and between-method imprecision were taken into account. The concentrations of DBT and TBT in QCM are similar to those in the harbour sediment certified reference material PACS-2. Likewise, the levels of DBT and TBT are in the range of these compounds normally present in sewage sludge worldwide. In the future, the QCM will be used for an intercomparison study on DBT and TBT in sewage sludge, and as a day-to-day QCM during studies concerning the application of sewage sludge as an additive to artificial soil or as a raw material in civil engineering construction.  相似文献   

17.
Previous studies have revealed considerable Cd isotope fractionations in seawater, which can be used to study the marine cycling of this micronutrient element. The low Cd concentrations that are commonly encountered in nutrient-depleted surface seawater, however, pose a particular challenge for precise Cd stable isotope analyses. In this study, we have developed a new procedure for Cd isotope analyses of seawater, which is suitable for samples as large as 20 L and Cd concentrations as low as 1 pmol/L. The procedure involves the use of a 111Cd–113Cd double spike, co-precipitation of Cd from seawater using Al(OH)3, and subsequent Cd purification by column chromatography. To save time, seawater samples with higher Cd contents can be processed without co-precipitation. The Cd isotope analyses are carried out by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The performance of this technique was verified by analyzing multiple aliquots of a large seawater sample that was collected from the English Channel, the SAFe D1 seawater reference material, and several samples from the GEOTRACES Atlantic intercalibration exercise. The overall Cd yield of the procedure is consistently better than 85% and the methodology can routinely provide ε 114/110Cd data with a precision of about ±0.5 ε (2sd, standard deviation) when at least 20–30 ng of natural Cd is available for analysis. However, even seawater samples with Cd contents of only 1–3 ng can be analyzed with a reproducibility of about ±3 to ±5 ε. A number of experiments were furthermore conducted to verify that the isotopic results are accurate to within the quoted uncertainty.  相似文献   

18.
High‐precision on‐line procedure for measurement of calcium isotopic ratio by coupling ion chromatography to multicollector inductively coupled plasma mass spectrometry was developed. Calcium separation from the sample matrix was achieved on an ion chromatography column—IonPac CS16—ID 3 mm connected with CERS 500 2 mm suppressor and followed by multicollector inductively coupled plasma mass spectrometry calcium isotopic ratio determination. Dry plasma mode was used with Aridus II desolvation system. To sustained samples with high level of total dissolved salts as well as account capacity of applied analytical column, the method has been optimized regarding calcium isotope ratio measurements with low‐resolution mass spectrometry. Mass discrimination and instrument drift were corrected by sample‐standard bracketing method using the 44Ca/42Ca isotope ratio of SRM 915a as a standard. Good accuracy and reasonable precision of calcium isotope ratio (generally 0.20‰ [2SD]) were achieved, which are comparable to off‐line Ca separation and continuous measurement. The reproducibility of the proposed analytical procedure was verified by measuring the SRM 915a standard as a sample randomly over 3 months (n = 56). Applicability of the protocol was demonstrated for matrix‐rich natural water samples, coral samples, and bone standard reference materials.  相似文献   

19.
This paper describes a new analytical method, using a combination of ammonium pyrrolidine dithiocarbamate/methyl isobutyl ketone (APDC‐MIBK) microextraction and laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS), for the determination of the concentrations of Cd and Pb in aqueous samples. Only 200 μL of organic solvent was used throughout the entire analysis process, with enhancement factors as high as 25. Recoveries from replicate analyses of natural water [NIST 1640(a)] containing mean concentrations of 3.1 μg Cd L?1 and 9.3 μg Pb L?1 were 95 ± 3 and 104 ± 4%, respectively. The corresponding detection limits were 0.6 μg L ?1 for Cd and 0.9 μg L ?1 for Pb. The main advantage of this approach is its simplicity in terms of sample preparation, as demonstrated by quantifying the levels of Cd and Pd in real samples, including tap water, groundwater, and seawater, using a standard addition method.  相似文献   

20.
A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2 L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a 207Pb–204Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28 ± 21 pg (1sd) and typical Pb recoveries of 40–60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about ±1 to ±10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12 ± 4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (±2sd) of 700–1500 ppm and 1000–2000 ppm were achieved for 207Pb/206Pb, 208Pb/206Pb and 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor 204Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the 206Pb/204Pb ratios are well correlated with 207Pb/206Pb, underlining the significant improvement achieved in the measurement of the minor 204Pb isotope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号