首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
超支化聚缩水甘油醚(HPG)是一种分子内部为醚键,分子周围有大量羟基的超支化聚合物.这些结构特点使超支化聚缩水甘油醚在催化剂载体、生物医药、聚合物电解质等领域具有重要意义.本文介绍了超支化聚缩水甘油醚的合成方法及其功能化的研究进展,并简要分析了其发展前景.  相似文献   

2.
陈皞  贾志峰  颜德岳 《高分子学报》2007,(11):1097-1101
由聚丙二醇二缩水甘油醚和甘油通过质子转移聚合(proton transfer polymerization)一步法制备了端羟基的温敏性超支化聚醚.聚合产物的分子量(Mn)在1.76×104~2.43×104之间,玻璃化转变温度(Tg)在-31.5~-26.7℃之间,热分解温度(Td)在367~376℃之间.通过控制聚丙二醇二缩水甘油醚和甘油的投料比,实现了对温敏性超支化聚醚最低临界溶解温度(LCST)的调节,LCST可控制在28.3~39.6℃之间.  相似文献   

3.
随着纳米医学的发展,具有控制释放药物和生物活性分子、靶向刺激响应生理环境的聚合物纳米载体成为该领域活跃而具潜力的研究方向。超支化聚缩水甘油醚因其特定的三维结构、良好的亲水性、生物相容性和可修饰性而引起生物材料界的广泛关注。而经功能化修饰的超支化聚缩水甘油醚还可自组装成胶束、囊泡等药物载体或共价偶联成大分子前药。本文从超支化聚缩水甘油醚的疏水两亲修饰、环境敏感性功能化和超分子组装体改性三方面综述了功能化修饰的超支化聚缩水甘油醚在药物载体领域的研究进展。并系统归纳了超支化聚缩水甘油醚两亲功能化、环境敏感功能化的分子设计策略。另外,对基于环糊精主客体作用的超支化超分子聚缩水甘油醚共聚物的组装行为进行了简述。  相似文献   

4.
超支化聚氨酯固体电解质导电性能的光谱学研究   总被引:2,自引:0,他引:2  
用超支化聚氨酯 +线性聚氨酯作为基体 ,LiClO4作为离子源制得聚合物固体电解质 .用Raman光谱 ,FTIR光谱等光谱学方法研究了聚合物电解质中盐离子和聚合物基团之间的相互作用 .研究表明超支化聚氨酯对盐有较好的溶解作用 .研究还表明超支化聚氨酯加入有利于提高体系的电导率  相似文献   

5.
采用十六酰氯将商品超支化聚甘油醇部分酯化,再将残留的羟基转化为丙烯酸酯或甲基丙烯酸酯基,得到了两亲性超支化聚合物。通过1H NMR求得羟基的酯化度和所得两亲性超支化聚合物的数均分子量。此聚合物作为反相胶束型的单分子纳米胶囊,可用来包裹亲水性染料。用紫外光谱评价了纳米胶囊对染料的包裹能力。结果表明,与不含功能基的单分子纳米胶囊相比,带有少量丙烯酸酯基的纳米胶囊可以包裹更多的亲水性染料,且含丙烯酸酯基比含甲基丙烯酸酯基的纳米胶囊包裹效果更明显。  相似文献   

6.
以羟基化多壁碳纳米管(MWNT-OH)为引发剂,通过原位负离子开环聚合制备了生物相容性多羟基超支化聚缩水甘油接枝的碳纳米管(MWNT-HPG),利用酯化反应将荧光分子罗丹明6B标记于聚合物上,然后聚合物上的羟基和丁二酸酐反应将其转化为羧基.用TGA、FTIR、TEM、SEM等手段对产物进行了表征.用靶向表皮生长因子受体(EGFR)的小分子多肽D4修饰了所得的荧光功能化碳纳米管,并将其做为受体介导靶向肿瘤细胞的纳米载体,通过噻唑蓝(MTT)比色法评价功能化碳纳米管作为载体的安全性.用荧光显微镜观察其与人肺腺癌细胞SPCAI细胞的结合状态.结果证明了其有希望成为受体介导靶向肿瘤系统的纳米载体.  相似文献   

7.
AB2型超支化聚(胺-酯)活性端羟基与乙酸酐的功能化反应   总被引:3,自引:0,他引:3  
以二乙醇胺和丙烯酸甲酯为原料合成了具有端羟基的AB2型超支化聚(胺-酯)。研究了超支化聚(胺-酯)端羟基与乙酸酐的功能化反应,分析了温度和搅拌对该反应动力学的影响。实验结果表明:超支化聚(胺-酯)端羟基与乙酸酐的酯化反应动力学偏离二级反应,用反常扩散理论对这一实验现象进行了解释。  相似文献   

8.
合成了一系列含羟基和乙酰氧基的超支化聚酯 .将 4′ ,4″ 二羟基 2 甲酸 -三苯基甲烷 (酚酞啉 )直接缩聚和将 4′ ,4″ 二乙酰氧基 2 甲酸 -三苯基甲烷进行酯交换反应都成功得到了超支化聚酯 .以PS作标准物 ,由GPC测得的重均分子量为 2 0 0 0 0到 80 0 0 0 .13 CNMR测试表明聚合物支化度略高于 5 0 % .聚酯的玻璃化转变温度依赖于末端和侧基官能团类型 .该超支化聚酯末端含有反应性官能团 ,具有类似线性高分子的高的热稳定性 .相比之下 ,由于其大分子的形状和官能团的影响 ,末端为乙酰氧基的超支化聚酯显示了优良的溶解性能 ,这与一般线性高分子大不相同 .由于氢键的存在 ,末端为羟基的超支化聚酯的溶解性能不佳 ,但是酸化可破坏氢键网络 ,得到的超支化聚酯可溶于一般有机溶剂  相似文献   

9.
首先以烯丙基缩水甘油醚与N-氨乙基哌嗪反应合成新型B3单体,然后分别以六亚甲基二异氰酸酯和1,6-己二硫醇为A2单体与上述B3单体反应,利用异氰酸-羟基以及巯基-烯的反应,合成了同时含有羟基和烯丙基的双功能性超支化聚(氨酯-胺)和聚(硫醚-胺)。研究了单体种类及投料比与合成的超支化聚合物的化学与拓扑结构的关系。通过红外吸收光谱、核磁共振氢谱和凝胶渗透色谱表征了超支化聚合物的分子结构和化学组成。结果表明:该B3单体同时带有3个羟基与3个烯丙基,当A2和B3单体投料比(物质的量之比)为0.825∶1时,可以成功制备较高分子量的双功能性超支化聚合物。  相似文献   

10.
采用四氢呋喃(THF)和缩水甘油(glycidol)进行阳离子开环共聚,一步合成了主链中含有柔性聚四氢呋喃线型链段的温敏性超支化共聚醚.采用定量13C-NMR确定了共聚醚的超支化结构,同时计算了其支化度.利用体积排除色谱-多角度激光光散射(SEC-MALLS)对聚合物分子量及分布进行了表征.紫外-可见光光谱(UV)测试发现共聚醚水溶液透过率在最低临界溶解温度(LCST)附近呈现剧烈变化,但是其相变速率缓慢,相变平衡时间可达30 min;且聚合物溶液的相变速率和紫外光透过率变化具有温度依赖性.采用透射电镜(TEM)对相变过程观察后发现,这种缓慢相变过程是由于超支化共聚醚组装形成的胶束随温度升高发生不同程度聚集所致.  相似文献   

11.
以丙烯酸和氢氧化锂为原料用反相乳液聚合法合成聚丙烯酸锂 (PAALi) ,将其熔于低共熔盐 (一定比例的LiNO3 LiOOCCH3混合物 )中得到新型高分子固体电解质 (SPE) ,用XRD、IR、DTA、TG DTG等技术进行了表征 ,讨论了影响合成PAALi工艺及新型固体电解质电阻率的主要因素 ,在LiNO3 LiOOCCH3摩尔比为 1∶1时 ,将其按质量百分比 80∶2 0与聚丙烯酸锂混合均匀并熔融 ,得到的电解质其室温离子电导率可达 2× 10 - 5S·cm- 1 ,大量低共熔盐的加入可明显提高SPE的离子导电率 .XRD、DTA及TG DTG结果表明低共熔盐与聚丙烯酸锂形成了新的配合物  相似文献   

12.
Transport properties such as ionic conductivity, lithium transference number, and apparent salt diffusion coefficient are reported for solid polymer electrolytes (SPEs) prepared using several oligomeric bis[(perfluoroalkyl)sulfonyl]imide (fluorosulfonimide) lithium salts dissolved in high molecular weight poly(ethylene oxide) (PEO). The salt series consists of polyanions in which two discrete fluorosulfonimide anions are linked together by [(perfluorobutylene)disulfonyl]imide linker chains. The restricted diffusion technique was used to measure the apparent salt diffusion coefficients in SPEs, and cationic transference numbers were determined using both potentiostatic polarization and electrochemical impedance spectroscopy methods. A general trend of diminished salt diffusion coefficient with increasing anion size was observed and is opposite to the trend observed in ionic conductivity. This unexpected finding is rationalized in terms of the cumulative effects of charge carrier concentration, anion mobility, ion pairing, host plasticization by the anions, and salt phase segregation on the conductivity.  相似文献   

13.
Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li+ transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations.  相似文献   

14.
Blended‐salt electrolytes showing synergistic effects have been formulated by simply mixing several lithium salts in an electrolyte. In the burgeoning field of next‐generation lithium batteries, blended‐salt electrolytes have enabled great progress to be made. In this Review, the development of such blended‐salt electrolytes is examined in detail. The reasons for formulating blended‐salt electrolytes for lithium batteries include improvement of thermal stability (safety), inhibition of aluminum‐foil corrosion of the cathode current collector, enhancement of performance over a wide temperature range (or at a high or low temperature), formation of favorable interfacial layers on both electrodes, protection of the lithium metal anode, and attainment of high ionic conductivity. Herein, we highlight key scientific issues related to the formulation of blended‐salt electrolytes for lithium batteries.  相似文献   

15.
The physicochemical and electrochemical properties (electrical conductivity, viscosity, density, and electrochemical stability) of sulfolane solutions of various lithium salts are studied. The nature of the anion considerably affects the physicochemical and electrochemical properties of the electrolyte systems considered. Sulfolane solutions of lithium salts have moderate electrical conductivity and high electrochemical stability, and can be used as electrolytes in lithium batteries.  相似文献   

16.
The polysiloxane containing propylene carbonate side group and several lithium poly-meric salts were synthesized. The structure were confirmed by IR, NMR and XPS. Theblending systems of polysiloxane containing propylene carbonate group with different lithiumpolymeric salts were studied by ion conductivity XPS and DSC. Different lithium poly-meric salts in the blending system lead to conductivity arranged in the following sequence:poly(lithium ethylenebenzene sulfonate methylsiloxane)>poly(lithium propionate methyl-siloxane)>poly(lithium propylsulfonate methylsiloxane)>poly(lithium styrenesulfonate).In the blending system the best single ion conductivity was close to 10~(-5) Scm~(-1) at roomtemperature. XPS showed that at low lithium salt concentration the conductivity increasedwith the increasing content of lithium salt, in consequence of the increase of free ion andsolvent separated ion pair. At high lithium salt concentration the free ion was absent andthe solvent-separated ion pair functioned as carrier.  相似文献   

17.
用于锂离子电池聚合物电解质的组成、结构和性能   总被引:1,自引:0,他引:1  
董晓臣  王立 《化学进展》2005,17(2):0-253
聚合物电解质是全固态锂离子电池的重要组成部分, 其电导率对电池的性能有很重要的影响.本文综述了聚合物电解质的组成、结构和性能对锂 离子电池导电率影响的最新研究进展,特别是介绍了聚合物-碱金属盐复合电解质和聚离子体电解质两个体系的研究进展.  相似文献   

18.
采用溶剂聚合法, 将一种自制新型超支化聚醚(PHEMO)与异氰酸酯在电解液中进行缩合反应, 生成了一种包含有电解液的新型超支化聚醚聚氨酯(PHEU)聚合物电解质. 利用傅里叶红外光谱(FTIR)、示差扫描量热分析(DSC)、热重分析(TGA)和交流阻抗谱等测试方法对PHEU的结构、热稳定性能和离子电导率进行了研究. 研究结果表明, 当电解液中锂盐的浓度为3 mol/L, 电解液的质量为骨架材料质量加和的3倍时, 电解质体系的室温电导率可达到6.12×10-4 S/cm; 电化学稳定窗口为2.2—4.0 V, 具有良好的热稳定性和优良的机械性能. 另外, 在这种新型的电解质中, 聚氨酯大分子将电解液小分子牢固地包裹在里面, 有效地防止了凝胶聚合物电解质的漏液问题, 从而可以提高电池的安全性能.  相似文献   

19.
本文从丁二酸二甲酯和丁二醇合成了聚丁二酸丁二酯,并以高氯酸锂为掺杂剂制备了固体电解质。FT-IR、NMR、XPS测试发现酯基上的氧原子参与络合。WAXD、DSC等测试分析结果表明:络合物和聚酯的晶体相同;LiClO_4主要溶解在无定形区;盐的溶解降低聚酯的熔点、结晶度和结晶速度,而提高玻璃化温度;在低盐浓度区络合物熔点与盐浓度关系符合Flory-Huggins理论。络合物的电导率随盐浓度变化出现极大值,在低盐浓度区电导率与浓度的对数成线性关系。电解质的导电行为不能简单地为Arrhenius和WLF方程所解释。从扩散角度推导了导电方程,并描述了离子导电过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号