首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present the design of a superconducting flux qubit with a large loop inductance. The large loop inductance is desirable for coupling between qubits. The loop is configured into a gradiometer form that could reduce the interference from environmental magnetic noise. A combined Josephson junction, i.e., a DC-SQUID is used to replace the small Josephson junction in the usual 3-JJ (Josephaon junction) flux qubit, leading to a tunable energy gap by using an independent external flux line. We perform numerical calculations to investigate the dependence of the energy gap on qubit parameters such as junction capacitance, critical current, loop inductance, and the ratio of junction energy between small and large junctions in the flux qubit. We suggest a range of values for the parameters.  相似文献   

2.
An interaction-free measurement protocol is described for a quantum circuit consisting of a superconducting qubit and a readout Josephson junction. By measuring the state of the qubit, one can ascertain the presence of a current pulse through the circuit at a previous time without any energy exchange between the qubit and the pulse.  相似文献   

3.
The evolution of a quantum system is informationally interpreted and used to describe decay in the coherent states of Josephson atoms, including qubits based on two- and three-junction superconducting quantum interferometers. The reduced Lindblad equation is employed to examine the measurement procedure of the Josephson qubit state and the influence of a measuring device on its coherent-state decay.  相似文献   

4.
Quasiparticle tunneling across a Josephson junction sets a limit for the lifetime of a superconducting qubit state. We develop a general theory of the corresponding decay rate in a qubit controlled by a magnetic flux. The flux affects quasiparticles tunneling amplitudes, thus making the decay rate flux-dependent. The theory is applicable for an arbitrary quasiparticle distribution. It provides estimates for the rates in practically important quantum circuits and also offers a new way of measuring the phase-dependent admittance of a Josephson junction.  相似文献   

5.
6.
We propose a single shot quantum measurement to determine the state of a Josephson charge quantum bit (qubit). The qubit is a Cooper pair box and the measuring device is a two junction superconducting quantum interference device (dc SQUID). This coupled system exhibits a close analogy with a Rydberg atom in a high Q cavity, except that in the present device we benefit from the additional feature of escape from the supercurrent state by macroscopic quantum tunneling, which provides the final readout. We test the feasibility of our idea against realistic experimental circuit parameters and by analyzing the phase fluctuations of the qubit.  相似文献   

7.
We present a new readout method for a superconducting flux qubit, based on the measurement of the Josephson inductance of a superconducting quantum interference device that is inductively coupled to the qubit. The intrinsic flux detection efficiency and backaction are suitable for a fast and nondestructive determination of the quantum state of the qubit, as needed for readout of multiple qubits in a quantum computer. We performed spectroscopy of a flux qubit and we measured relaxation times of the order of 80 micros.  相似文献   

8.
We present the design, fabrication, and characterization of a barrier-tunable superconducting quantum interference device(SQUID) qubit for the study of Maxwell's demon experiment. In this work, a compound Josephson junction(CJJ)radio-frequency(RF)-SQUID qubit with an overdamped resistively shunted direct-current(DC)-SQUID magnetometer is used to continuously monitor the state of the qubit. The circuit is successfully fabricated with the standard Nb/Al-Al Ox/Nb trilayer process of our laboratory and characterized in a low noise measurement system, which is capable of measuring coherent dynamics of superconducting qubits, in an Oxford dilution refrigerator. All circuit parameters are determined accurately by fitting experimental data to theoretical analysis and simulation, which allows us to make a quantitative comparison between the results of the experiment and theory.  相似文献   

9.
We propose a scheme for generating squeezed states based on a superconducting hybrid system.Our system consists of a nanomechanical resonator,a superconducting flux qubit,and a superconducting transmission line resonator.Using our proposal,one can easily generate the squeezed states of the nanomechanical resonator.In our scheme,the nonlinear interaction between the nanomechanical resonator and the superconducting transmission line resonator can be implemented by the flux qubit as 'nonlinear media' with a tunable Josephson energy.The realization of the nonlinearity does not need any operations on the flux qubit and just needs to adiabatically keep it at the ground state,which can greatly decrease the effect of the decoherence of the flux qubit on the squeezed efficiency.  相似文献   

10.
Various physical systems were proposed for quantum information processing. Among those nanoscale devices appear most promising for integration in electronic circuits and large-scale applications. We discuss Josephson junction circuits in two regimes where they can be used for quantum computing. These systems combine intrinsic coherence of the superconducting state with control possibilities of single-charge circuits. In the regime where the typical charging energy dominates over the Josephson coupling, the low-temperature dynamics is limited to two states differing by a Cooper-pair charge on a superconducting island. In the opposite regime of prevailing Josephson energy, the phase (or flux) degree of freedom can be used to store and process quantum information. Under suitable conditions the system reduces to two states with different flux configurations. Several qubits can be joined together into a register. The quantum state of a qubit register can be manipulated by voltage and magnetic field pulses. The qubits are inevitably coupled to the environment. However, estimates of the phase coherence time show that many elementary quantum logic operations can be performed before the phase coherence is lost. In addition to manipulations, the final state of the qubits has to be read out. This quantum measurement process can be accomplished using a single-electron transistor for charge Josephson qubits, and a d.c.-SQUID for flux qubits. Recent successful experiments with superconducting qubits demonstrate for the first time quantum coherence in macroscopic systems.  相似文献   

11.
We have developed and tested a classical superconducting logic interface to a qubit prototype based on two macroscopically distinct quantum states of a vortex in a long Josephson junction. The initial state preparation as well as the readout of a qubit is demonstrated by using a relatively simple Rapid Single Flux Quantum (RSFQ) circuit. RSFQ logic appears as a very feasible choice for constructing an interface between superconducting qubits and room-temperature electronics.Received: 16 January 2004, Published online: 20 April 2004PACS: 74.40. + k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) - 74.50. + r Tunneling phenomena; point contacts, weak links, Josephson effects - 74.78.-w Superconducting films and low-dimensional structures  相似文献   

12.
We have realized a tunable coupling over a large frequency range between an asymmetric Cooper pair transistor (charge qubit) and a dc SQUID (phase qubit). Our circuit enables the independent manipulation of the quantum states of each qubit as well as their entanglement. The measurement of the charge qubit's quantum states is performed by an adiabatic quantum transfer from the charge to the phase qubit. The measured coupling strength is in agreement with an analytic theory including a capacitive and a tunable Josephson coupling between the two qubits.  相似文献   

13.
We introduce a new design concept for superconducting phase quantum bits (qubits) in which we explicitly separate the capacitive element from the Josephson tunnel junction for improved qubit performance. The number of two-level systems that couple to the qubit is thereby reduced by an order of magnitude and the measurement fidelity improves to 90%. This improved design enables the first demonstration of quantum state tomography with superconducting qubits using single-shot measurements.  相似文献   

14.
We study a readout scheme of a superconducting flux qubit state with a Cooper pair box as a transmon. The qubit states consist of the superpositions of two degenerate states where the charge and phase degrees of freedom are entangled. Owing to the robustness of the transmon against external fluctuations, our readout scheme enables the quantum non-demolition and single-shot measurement of flux qubit states. The qubit state readout can be performed by using the nonlinear Josephson amplifiers after a π/2 rotation driven by an ac electric field.  相似文献   

15.
Solid-state qubits have the potential for the large-scale integration and for the flexibility of layout for quantum computing. However, their short decoherence time due to the coupling to the environment remains an important problem to be overcome. We propose a new superconducting qubit which incorporates a spin-electronic device: the qubit consists of a superconducting ring with a ferromagnetic pi junction which has a metallic contact and a normal Josephson junction with an insulating barrier. Thus, a quantum coherent two-level state is formed without an external magnetic field. This feature and the simple structure of the qubit make it possible to reduce its size leading to a long decoherence time.  相似文献   

16.
We theoretically introduce a mesoscopic pendulum from a triple dot. The pendulum is fastened through a singly occupied dot (spin qubit). Two other strongly capacitively coupled islands form a double-dot charge qubit with one electron in excess oscillating between the two low-energy charge states (1,0) and (0,1). The triple dot is placed between two superconducting leads. Under realistic conditions, the main proximity effect stems from the injection of resonating singlet (valence) bonds on the triple dot. This gives rise to a Josephson current that is charge- and spin-dependent and, as a consequence, exhibits a distinct resonance as a function of the superconducting phase difference.  相似文献   

17.
We develop a fabrication process for the superconducting phase qubits in which Josephson junctions for both the qubit and superconducting quantum interference device(SQUID) detector are prepared by shadow evaporation with a suspended bridge. Al junctions with areas as small as 0.05 μm~2 are fabricated for the qubit, in which the number of the decoherencecausing two-level systems(TLS) residing in the tunnel barrier and proportional to the junction area are greatly reduced. The measured energy spectrum shows no avoided crossing arising from coherent TLS in the experimentally reachable flux bias range of the phase qubit, which demonstrates the energy relaxation time T_1 and dephasing time T_φ on the order of 100 ns and 50 ns, respectively. We discuss several possible origins of decoherence from incoherent or weakly-coupled coherent TLS and further improvements of the qubit performance.  相似文献   

18.
We use boundary field theory to describe the phases accessible to a tetrahedral qubit coupled to Josephson junction chains acting as Tomonaga-Luttinger liquid leads. We prove that, in a pertinent range of the fabrication and control parameters, an attractive finite coupling fixed point emerges due to the geometry of the composite Josephson junction network. We show that this new stable phase is characterized by the emergence of a quantum doublet which is robust not only against the noise in the external control parameters (magnetic flux, gate voltage) but also against the decoherence induced by the coupling of the tetrahedral qubit with the superconducting leads. We provide protocols allowing to read and to manipulate the state of the emerging quantum doublet and argue that a tetrahedral Josephson junction network operating near the new finite coupling fixed point may be fabricated with today?s technologies.  相似文献   

19.
We have fabricated a Cooper-pair transistor (CPT) with parameters such that for appropriate voltage biases, it behaves essentially like a single Cooper-pair box (SCB). The effective capacitance of a SCB can be defined as the derivative of the induced charge with respect to gate voltage and has two parts, the geometric capacitance, C(geom), and the quantum capacitance C(Q). The latter is due to the level anticrossing caused by the Josephson coupling and is dual to the Josephson inductance. It depends parametrically on the gate voltage and its magnitude may be substantially larger than C(geom). We have detected C(Q) in our CPT, by measuring the in phase and quadrature rf signal reflected from a resonant circuit in which the CPT is embedded. C(Q) can be used as the basis of a charge qubit readout by placing a Cooper-pair box in such a resonant circuit.  相似文献   

20.
We suggest a system in which the amplitude of macroscopic flux tunneling can be modulated via the Aharonov-Casher effect. The system is an rf SQUID with the Josephson junction replaced by a Bloch transistor--two junctions separated by a small superconducting island on which the charge can be induced by an external gate voltage. When the Josephson coupling energies of the junctions are equal and the induced charge is q = e, destructive interference between tunneling paths brings the flux tunneling rate to zero. The device may also be useful as a qubit for quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号