首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four approaches have been explored for the preparation of maleimido-functionalized self-assembled monolayers (SAMs) on silicon. SAMs prepared by self-assembly of maleimido-functionalized alkyltrichlorosilanes (11-maleimido-undecyl-trichlorosilane) on oxide-covered silicon yield higher signals from maleimido functionalities in ATR-IR (attenuated total reflection IR) spectroscopy and XPS (X-ray photoelectron spectroscopy) than the other three methods. The surface composition of maleimido groups was tailored further by the formation of mixed monolayers with nonfunctionalized alkyltrichlorosilanes (decyltrichlorosilane). The order of the alkyl chains within the monolayers only slightly depends on the composition of the mixed monolayers. We utilized the maleimido-terminated SAMs to bind various nucleophilic compounds, alkylamines, alkylthiols, and thiol-tagged DNA oligonucleotides by means of conjugate addition.  相似文献   

2.
3.
4.
Herein, the scanning electrochemical microscopy (SECM) approach is applied to study the formation of thiol-porphyrin self-assembled monolayer (SAMs). Using cyclic voltammetry (CV), the formation process is characterized adopting different probe molecules. The observed phenomena indicate that the formation process is affected by solution properties and the molecular structure of the probe molecules. In K(3)Fe(CN)(6) , the SAMs show a strong electron-transfer (ET) blocking effect on a pure porphyrin-modified electrode. However, addition of metal ions to the porphyrin molecules leads to ET. A consistent tendency is observed throughout the modification process using CV and SECM methods. Furthermore, k(eff) values, the apparent heterogeneous rate constants, obtained for different modification periods affirm the validity of these results. SECM images are used to collect surface information in the course of the modification process when the substrate potential is 0.5 V versus Ag/AgCl. The effect of the substrate potential indicates that the oxidation of the porphyrin molecules is supported by more positive potentials because of the similar bimolecular reaction of the porphyrin ring with positive charge and the probe molecules with negative charge.  相似文献   

5.
6.
7.
Phosphonic acid (--PO(3)H(2)) terminated self-assembled monolayers (SAMs) on a gold surface were used as a functional interface to immobilize hemoglobin (Hb). In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) measurements show that Hb immobilization is a sluggish process due to formation of multilayer Hb structures on the PO(3)H(2)-terminated SAMs, as revealed by ellipsometry, atomic force microscopy (AFM), and cyclic voltammetry (CV). In the multilayered Hb film, the innermost Hb molecules can directly exchange electrons with the electrode, whereas Hb beyond this layer communicates electronically with the electrode via protein-protein electron exchange. In addition, electrochemical measurements indicate that immobilization of Hb on the PO(3)H(2)-terminated SAMs is not driven by the electrostatic interaction, but likely by hydrogen-bonding interaction. The immobilized Hb molecules show excellent bioelectrocatalytic activity towards hydrogen peroxide, that is, the PO(3)H(2)-terminated SAMs are promising for construction of third-generation biosensors.  相似文献   

8.
9.
The catalytic activity of a series of Au monolayer protected colloids (Au MPCs) containing different ratios of the catalytic unit triazacyclononane?ZnII (TACN?ZnII) and an inert triethyleneglycol (TEG) unit was measured. The catalytic self‐assembled monolayers (SAMs) are highly efficient in the transphosphorylation of 2‐hydroxy propyl 4‐nitrophenyl phosphate (HPNPP), an RNA model substrate, exhibiting maximum values for the Michaelis–Menten parameters kcat and KM of 6.7×10?3 s?1 and 3.1×10?4 M , respectively, normalized per catalytic unit. Despite the structural simplicity of the catalytic units, this renders these nanoparticles among the most active catalysts known for this substrate. Both kcat and KM parameters were determined as a function of the mole fraction of catalytic unit (x 1 ) in the SAM. Within this nanoparticle (NP) series, kcat increases up till x 1 ≈0.4, after which it remains constant and KM decreases exponentially over the range studied. A theoretical analysis demonstrated that these trends are an intrinsic property of catalytic SAMs, in which catalysis originates from the cooperative effect between two neighboring catalytic units. The multivalency of the system causes an increase of the number of potential dimeric catalytic sites composed of two catalytic units as a function of the x 1 , which causes an apparent increase in binding affinity (decrease in KM). Simultaneously, the kcat value is determined by the number of substrate molecules bound at saturation. For values of x 1 > 0.4, isolated catalytic units are no longer present and all catalytic units are involved in catalysis at saturation. Importantly, the observed trends are indicative of a random distribution of the thiols in the SAM. As indicated by the theoretical analysis, and confirmed by a control experiment, in case of clustering both kcat and KM values remain constant over the entire range of x 1 .  相似文献   

10.
11.
This article describes the application of nitroxide exchange reactions of surface-bound alkoxyamines as a tool for reversible chemical modification of self-assembled monolayers (SAMs). This approach is based on radical chemistry, which allows for introduction of various functional groups and can be used to reversibly introduce functionalities at surfaces. To investigate the scope of this surface chemistry, alkoxyamines with different functionalities were synthesized and were then applied to the immobilization of, for example, dyes, sugars, or biotin. Surface analysis was carried out by contact angle, X-ray photoelectron spectroscopy, and fluorescence microscopy measurements. The results show that this reaction is highly efficient, reversible, and mild and allows for immobilization of various sensitive functional groups. In addition, Langmuir-Blodgett lithography was used to generate structured SAMs. Site-selective immobilization of a fluorescent dye could be achieved by nitroxide exchange reactions.  相似文献   

12.
Herein, the influence of silicon surface modification via Si-C(n)H(2n+1) (n=10,12,16,22) monolayer-based devices on p-type 100 and n-type 100 silicon is studied by forming MIS (metal-insulator-semiconductor) diodes using a mercury probe. From current density-voltage (J-V) and capacitance-voltage (C-V) measurements, the relevant parameters describing the electrical behavior of these diodes are derived, such as the diode ideality factor, the effective barrier height, the flatband voltage, the barrier height, the monolayer dielectric constant, the tunneling attenuation factor, and the fixed charge density (Nf). It is shown that the J-V behavior of our MIS structures could be precisely tuned via the monolayer thickness. The use of n-type silicon resulted in lower diode ideality factors as compared to p-type silicon. A similar flatband voltage, independent of monolayer thickness, was found, indicating similar properties for all silicon-monolayer interfaces. An exception was the C10-based monolayer device on p-type silicon. Furthermore, low values of N(f) were found for monolayers on p-type silicon (approximately 6 x 10(11) cm(-2)). These results suggest that Si--C linked monolayers on flat silicon may be a viable material for future electronic devices.  相似文献   

13.
Control over the T(c) value of high-T(c) superconductors by self-assembled monolayers is demonstrated (T(c) = critical temperature). Molecular control was achieved by adsorption of polar molecules on the superconductor surface (see scheme) that change its carrier concentration through charge transport or light-induced polarization.  相似文献   

14.
The electrochemical behavior of Si--C linked organic monolayers is studied in electrolyte-insulator-Si devices, under conditions normally encountered in potentiometric biosensors, to gain fundamental knowledge on the behavior of such Si electrodes under practical conditions. This is done via titration experiments, Mott-Schottky data analysis, and data fitting using a site-binding model. The results are compared with those of native SiO(2) layers and native SiO(2) layers modified with hexamethyldisilazane. All samples display pH sensitivity. The number of Si--OH groups on the alkylated samples is calculated to be less than 0.7 % of that of a pure SiO(2) insulator, which still causes a pH sensitivity of approximately 25 mV per pH unit in the pH range: 4-7. The alkylated samples hardly suffer from response changes during up- and down-going titrations, which indicates that very little oxide is additionally formed during the measurements. The pK(a) values of all samples with monolayers (4.0-4.4) are lower than that of native SiO(2) (6.0). The long-term drift (of approximately 1 mV h(-1)) is moderate. The results indicate that biosensors composed of alkylated Si substrates are feasible if a cross-sensitivity towards pH in the sensor signal is taken into account.  相似文献   

15.
This work demonstrates the use of photocleavable cholesterol derivatives to create supported bilayer lipid membrane arrays on silica. The photocleavable cholesteryl tether is attached to the surface by using the reaction of an amine-functionalized self-assembled monolayer (SAM) and the N-hydroxysuccinimide-based reagent 9. The resultant SAM contains an ortho-nitrobenzyl residue that can be cleaved by photolysis by using soft (365 nm) UV light regenerating the original amine surface, and which can be patterned using a mask. The photoreaction yield was approximately 75 % which was significantly higher than previously found for related ortho-nitrobenzyl photochemistry on gold substrates. The SAMs were characterized by means of contact angle measurements, ellipsometry and X-ray photoelectron spectroscopy. Patterned surfaces were characterized with SEM and AFM. After immersing the patterned surface into a solution containing small unilamellar vesicles of egg phosphatidylcholine (PC), supported lipid membranes were formed comprised of lipid bilayer over the amine functionalized "hydrophilic" regions and lipid monolayer over the cholesteryl "hydrophobic" regions. This was confirmed by fluorescence microscopy and AFM. FRAP studies yielded a lateral diffusion coefficient for the probe molecule of 0.14+/-0.05 microm(2) s(-1) in the bilayer regions and approximately 0.01 microm(2) s(-1) in the monolayer regions. This order of magnitude difference in diffusion coefficients effectively serves to isolate the bilayer regions from one another, thus creating a bilayer array.  相似文献   

16.
This paper describes the generation of reversible patterns of self-assembled monolayers (SAMs) on gold and silicon oxide surfaces via the formation of reversible covalent bonds. The reactions of (patterned) SAMs of 11-amino-1-undecanethiol (11-AUT) with propanal, pentanal, decanal, or terephthaldialdehyde result in dense imine monolayers. The regeneration of these imine monolayers to the 11-AUT monolayer is obtained by hydrolysis at pH 3. The (patterned) monolayers were characterized by Fourier transform infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, contact angle and electrochemical measurements, and atomic force microscopy. Imines can also be formed by microcontact printing of amines on terephthaldialdehyde-terminated substrates. Lucifer Yellow ethylenediamine was employed as a fluorescent amine-containing marker to visualize the reversible covalent patterning on a terephthaldialdehyde-terminated glass surface by confocal microscopy. These experiments demonstrate that with reversible covalent chemistry it is possible to print and erase chemical patterns on surfaces repeatedly.  相似文献   

17.
18.
The electronic properties of various transparent conducting oxide (TCO) surfaces are probed electrochemically via self-assembled monolayers (SAMs). A novel graftable probe molecule having a tethered trichlorosilyl group and a redox-active ferrocenyl functionality (Fc(CH2) 4SiCl3) is synthesized for this purpose. This molecule can be self-assembled via covalent bonds to form monolayers on various TCO surfaces. On as-received ITO, saturation coverage of 6.6 x 10(-10) mol/cm2 by a close-packed monolayer and an electron-transfer rate of 6.65 s(-1) is achieved after 9 h of chemisorption, as determined by cyclic voltammetry (CV) and synchrotron X-ray reflectivity. With this molecular probe, it is found that O2 plasma-treated ITO has a significantly greater electroactive coverage of 7.9 x 10 (-10) mol/cm2 than as-received ITO. CV studies of this redox SAM on five different TCO surfaces reveal that MOCVD-derived CdO exhibits the greatest electroactive coverage (8.1 x 10(-10) mol/cm2) and MOCVD-derived ZITO (ZnIn2.0Sn1.5O) exhibits the highest electron transfer rate (7.12 s(-1)).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号