首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a molecular simulation study of freezing transitions for simple fluids in narrow slit pores. A major stumbling block in previous studies of freezing in pores has been the lack of any method for calculating the free energy difference between the confined solid and liquid phases. Conventional thermodynamic integration methods often fail for confined systems, due to the difficulty in choosing a suitable path of integration. We use a different approach that involves calculating the Landau free energy as a function of a suitable order parameter, using the grand canonical Monte Carlo simulation method. The grand free energy for each phase can then be obtained by one-dimensional integration of the Landau free energy over the order parameter. These calculations are carried out for two types of wall—fluid interaction, a hard wall and a strongly attractive wall modelled on carbon. The grand free energy results for both cases clearly indicate a first order fluid to solid transition. In the case of the attractive carbon wall, there are three phases. Phase A corresponds to all layers having a liquid-like structure; phase B corresponds to the contact layers (the layers adjacent to the two pore walls) being frozen and the rest of the layers being fluid-like; phase C corresponds to all the layers being frozen. Our results for the angular structure function in the individual molecular layers show strong evidence of a transition from a two-dimensional liquid phase to a hexatic phase. This is followed by a transition from the hexatic to a crystal phase.  相似文献   

2.
Tilt-driven phase transitions between hexatic smectic phases: SmF-HexB and reversed HexB-SmF have been studied in compounds belonging to two enaminoketone derivative homologue series. The tilt angle order parameter has been measured and its temperature dependence near the phase transition point has been described by applying mean-field model. For both phase sequences the tricritical points have been observed on phase transition lines in binary mixtures of respective materials having first and second order phase transitions between hexatic phases. Received 21 June 1999  相似文献   

3.
Concentrated suspensions of model colloidal hard spheres at a wall were studied in real space by means of time-resolved fluorescence confocal scanning microscopy. Both structure and dynamics of these systems differ dramatically from their bulk analogs (i.e., far away from a wall). In particular, systems that are a glass in the bulk show significant hexagonal order at a wall. Upon increasing the volume fraction of the colloids, a reentrant melting transition involving a hexatic structure is observed. The last observation points to two-dimensional behavior of matter at walls.  相似文献   

4.
In this article the physical properties of hexatic phases of three substances MHPNBC, FOOPP and FNHPP have been studied by differential scanning calorimetry, texture observation and dielectric spectroscopy. Experimental results are discussed from the point of view of existing theories. It is interesting that two of the substances studied, the FOOPP and FNHPP, exhibit enhanced spontaneous polarization in the highly ordered SmI* phase and show a jump of the spontaneous polarization in the vicinity of the SmC*–SmI* transition. In the SmI* phase of FOOPP a very high value of spontaneous polarization of the order of 530?nC?cm?2 was found. Based on the results obtained the macroscopic and microscopic properties of the hexatic phases are discussed.  相似文献   

5.
We present the first study of the layer compression modulus B carried out near, above and below the Smectic C–Hexatic I critical point in racemic mixtures of methylbutyl phenyl octylbiphenyl-carboxylate (8SI) and the octyloxy biphenyl analog (8OSI), at frequencies ranging from 0.2 Hz to 2 ×103 Hz. The behavior of B as a function of temperature shows a progressive evolution from a first order transition in 8SI to a continuous supercritical behavior in 8OSI. The latter is characterized by an increase in B, which appears above the transition, and which is followed by a leveling off when the temperature is decreased towards the transition. It is proposed that this behavior stems from the relaxation of the hexatic domains which are frozen in the frequency range studied. For the supercritical and near-critical compounds, B exhibits a small dip near the transition temperature, which is visible in the low frequency range only, indicating that the dynamics associated with the critical point is very slow. We also report measurements in the Crystal-J phase of the pure compounds, and show that 8SI behaves mechanically as a hexatic phase and 8OSI as a soft crystal phase.  相似文献   

6.
In this study, we investigate the phase transitions of the RN-AdS black hole at its Davies points according to the generalized Ehrenfest classification of phase transition established based on fractional derivatives. Notably, Davies points label the positions at which the heat capacity diverges. According to the usual Ehrenfest classification, second-order phase transitions occur at these points. For the RN-AdS black hole, the Davies points can be classified into two types. The first type corresponds to extreme values of the temperature, and the second type corresponds to the infection point (namely the critical point) of temperature. Employing the generalized Ehrenfest classification, we determine that the orders of phase transition at the two types of Davies points are different, that is, we note an order of 3/2 for the first type and 4/3 for the second type. Thus, this finer-grained classification can discriminate between phase transitions that are expected to lie in the same category, providing new insights leading toward a better understanding of black hole thermodynamics.  相似文献   

7.
8.
Melting in two spatial dimensions, as realized in thin films or at interfaces, represents one of the most fascinating phase transitions in nature, but it remains poorly understood. Even for the fundamental hard-disk model, the melting mechanism has not been agreed upon after 50 years of studies. A recent Monte?Carlo algorithm allows us to thermalize systems large enough to access the thermodynamic regime. We show that melting in hard disks proceeds in two steps with a liquid phase, a hexatic phase, and a solid. The hexatic-solid transition is continuous while, surprisingly, the liquid-hexatic transition is of first order. This melting scenario solves one of the fundamental statistical-physics models, which is at the root of a large body of theoretical, computational, and experimental research.  相似文献   

9.
10.
We show that facilitated spin mixtures with a tunable facilitation reproduce, on a Bethe lattice, the simplest higher-order singularity scenario predicted by the mode-coupling theory (MCT) of liquid-glass transition. Depending on the facilitation strength, they yield either a discontinuous glass transition or a continuous one, with no underlying thermodynamic singularity. Similar results are obtained for facilitated spin models on a diluted Bethe lattice. The mechanism of dynamical arrest in these systems can be interpreted in terms of bootstrap and standard percolation and corresponds to a crossover from a compact to a fractal structure of the incipient spanning cluster of frozen spins. Theoretical and numerical simulation results are fully consistent with MCT predictions.  相似文献   

11.
In this paper I will describe some results that have been recently obtained in the study of random Euclidean matrices, i.e. matrices that are functions of random points in Euclidean space. In the case of translation invariant matrices one generically finds a phase transition between a phonon phase and a saddle phase. If we apply these considerations to the study of the Hessian of the Hamiltonian of the particles of a fluid, we find that this phonon-saddle transition corresponds to the dynamical phase transition in glasses, that has been studied in the framework of the mode coupling approximation. The boson peak observed in glasses at low temperature is a remanent of this transition. Received 4 May 2002  相似文献   

12.
We report the observation of two-dimensional melting in a monolayer film of a sphere-forming diblock copolymer. By annealing in a well-controlled temperature gradient we obtain a complete record of the transition from a low-temperature hexatic phase to a high-temperature liquid in a single experiment. We investigate the temperature dependence of the orientational and translational correlation lengths, as well as of the topological defect density. All evidence suggests that the melting transition is first-order, but correlations in the liquid phase indicate the existence of an underlying second-order transition preempted by the first-order freezing.  相似文献   

13.
Boundary effects in liquid-crystalline phases can be large due to long-ranged orientational correlations. We show that the chiral-hexatic phase can be locked into an apparent three-dimensional N+6 phase via such effects. Simple numerical estimates suggest that the recently discovered "polymer hexatic" may actually be this locked phase.  相似文献   

14.
15.
Xintian Wu 《Physica A》2007,383(2):209-231
The locally ordered regions (LOR) in the phase transition in disordered systems are studied. There are two parts in this paper. One part is to report our numerical results on the one-dimensional saddle point equation of the Ginzburg-Landau Hamiltonian with random temperature in the presence of an ordering field. The disordered system is modelled as a lattice, on which each cell has a local reduced temperature. The random part of the local reduced temperature is distributed in the Gaussian form. The one-dimensional saddle point equation is solved numerically. The average, the fluctuation and the correlation length of the solution are calculated. The scaling relations for these quantities with the temperature, the ordering field and the disorder strength are derived. The numerical data are fitted with the scaling relations well. Another part is to discuss qualitatively the phase diagram of the finite-range correlated disordered systems. There are two proposed classes for the phase transition in connection with the LOR. One class is described by the percolative scenario, in which the phase transition is inhomogeneous. In the percolative scenario the percolation of the LOR dominates the phase transition. In another class, the phase transition is homogeneous, and can be described by the renormalization group (RG) with replica symmetry breaking (RSB). In the RG with RSB, there is nothing to do with the percolation of LOR. We shall show that these two theories, which seem contradictory, may describe two parts of the whole phase diagram. Whether the phase transition is homogeneous or inhomogeneous depends on the interaction between the LOR. If the interaction between the LOR is strong enough, the phase transition is percolative and inhomogeneous. If the interaction between the LOR is weak, the phase transition is homogeneous. The interaction between the LOR is discussed with the numerical solution on the saddle point equation.  相似文献   

16.
《Nuclear Physics B》1995,441(3):629-657
We investigate an effective model for the finite-temperature symmetry-restoration phase transition of the electroweak theory. It is obtained by dimensional reduction of the (3 + 1)-dimensional full theory and by subsequent integration over all static gauge degrees of freedom. The resulting theory corresponds to a 3-dimensional O(4) ferromagnet containing cubic and quartic terms of the field in its potential function. Possible nonperturbative effects of a magnetic screening mass are parametrically included in the potential. We analyse the theory using mean-field and numerical Monte Carlo (MC) simulation methods. At the value of the physical Higgs mass, mH = 37 GeV, considered in the present investigation, we find a discontinuous symmetry-restoring phase transition. We determine the critical temperature, order parameter jump, interface tension and latent heat characteristics of the transition. The Monte Carlo results indicate a somewhat weaker first-order phase transition as compared to the mean-field treatment, demonstrating that non-perturbative fluctuations of the Higgs field are relevant. This effect is especially important for the interface tension. Any observation of hard first-order transition could result only from non-perturbative effects related to the gauge degrees of freedom.  相似文献   

17.
Molecular simulations for simple fluids in narrow slit-shaped carbon pores exhibit crystal-hexatic and hexatic-liquid transitions that are consistent with Kosterlitz-Thouless-Halperin-Nelson-Young theory. The temperature range over which the hexatic phase is stable is dramatically widened under confinement. Remarkably, the transitions, which are continuous for a single adsorbed layer, become weakly first order when the pore can accommodate two molecular layers. Nonlinear dielectric effect measurements for CCl4 and aniline in activated carbon fibers (pore width 1.4 nm) show divergence at these transitions, confirming the hexatic phase.  相似文献   

18.
We report results from molecular dynamics simulations of cooperative motion in a quasi-two-dimensional system of colloid particles. We find that the onset of the deviation of the single-particle displacement distribution from Gaussian form starts in the liquid phase and extends, with increasing magnitude, through the hexatic phase into the crystalline phase. The time for which the deviation is maximum increases exponentially with the density. As the density increases toward the hexatic phase a third dynamical relaxation mode emerges. We argue that the collective motion is generated by superpositions of instantaneous normal mode vibrations, with lifetimes that increase with the density, along paths with strong bond-orientation correlation.  相似文献   

19.
We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. The first result is the numerical evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: (i) A stochasticity threshold (ST), characterized by a value of the energy per degree of freedom below which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov exponents). It tends to vanish as the number N of degrees of freedom is increased. (ii) A strong stochasticity threshold (SST), characterized by a value of the energy per degree of freedom at which a crossover appears between two different power laws of the energy dependence of the largest Lyapunov exponent, which phenomenologically corresponds to the transition between weak and strong chaotic regimes. It is stable with N. The second result is the development of a Riemannian geometric theory to explain the origin of Hamiltonian chaos. Starting this theory has been motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin of chaos in systems of arbitrarily large N, or arbitrarily far from quasi-integrability, or displaying a transition between weak and strong chaos. Finally, the third result stems from the search for the transition between weak and strong chaos in systems other than FPU. Actually, we found that a very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological theory of phase transitions.  相似文献   

20.
We study the statistical mechanics of hydrogen dissolved in metals. The underlying model is based on the assumption that the dominant attractive interaction between the protons in the metal is of an elastic nature.

In the first part of the paper we review some general properties of the elastic interaction. We then discuss the importance of boundary conditions for the form of the elastic interaction, which turns out to be of the Curie-Weiss type with macroscopic range.

In the second part we investigate the a-a' (‘gas-liquid’) phase transition in the hydrogen lattice fluid. The long-range part of the elastic interaction is treated in mean field approximation. In the canonical ensemble as opposed to the grand canonical ensemble one finds no co-existing phases near the critical point. Instead there is a continuous transition which changes into a first-order transition at tricritical points. In the temperature-density region which normally corresponds to the two-phase co-existence region the hydrogen density is inhomogeneous and varies on a macroscopic scale.

The peculiar nature of the a-a' phase transition is due to the long-range character of the elastic interaction, which ultimately results from the requirement of coherency of the host crystal. We argue that coherent metal-hydrogen systems offer examples of real systems where the classical theory of phase transitions applies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号