首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
快速充电站选址是电动汽车运营的重要内容之一。本文考虑电动汽车用户会通过绕行一定距离对车辆进行充电这一特征,建立了一个以电动汽车快速充电站建站成本和旅客整体绕行成本之和最小的双层整数规划模型。本文首先给出了用于生成绕行路径集合的A*算法,然后设计了一种包含局部迭代搜索的自适应遗传算法对该模型进行求解。为了测试算法性能,通过两个不同规模的算例图与已有求解FPLM问题的遗传算法进行了比较,数值试验部分证明了算法的正确性和有效性。最后引入浙江省的高速路网图,从建站成本和截流量两方面对电池续航里程带来的影响进行了相关的灵敏度分析。  相似文献   

2.
In this paper, we address the problem of determining the optimal fleet size for a vehicle rental company and derive analytical results for its relationship to vehicle availability at each rental station in the company’s network of locations. This work is motivated by the recent surge in interest for bicycle and electric car sharing systems, one example being the French program Vélib (2010). We first formulate a closed queueing network model of the system, obtained by viewing the system from the vehicle’s perspective. Using this framework, we are able to derive the asymptotic behavior of vehicle availability at an arbitrary rental station with respect to fleet size. These results allow us to analyze imbalances in the system and propose some basic principles for the design of system balancing methods. We then develop a profit-maximizing optimization problem for determining optimal fleet size. The large-scale nature of real-world systems results in computational difficulties in obtaining this exact solution, and so we provide an approximate formulation that is easier to solve and which becomes exact as the fleet size becomes large. To illustrate our findings and validate our solution methods, we provide numerical results on some sample networks.  相似文献   

3.
This study considers network design, capacity planning and vehicle routing for collection systems in reverse logistics. The network design and capacity planning problems are to determine the static locations and capacities of collection points as well as the dynamic allocations of demand points to the opened collection points over a planning horizon, and the vehicle routing problem is to determine the number and routes of vehicles in such a way that each collection point must be visited exactly once by one vehicle starting and terminating at the depot while satisfying the return demands at collection points and the vehicle capacity. The objective is to minimize the sum of fixed costs to open collection points and to acquire vehicles as well as variable costs to transport returns at demand points to the opened collection points and travel the opened collection points by vehicles. Unlike the location-routing problems, the integrated problem considered in this study has several features: multi-period dynamic model, capacity planning for collection points, maximum allowable collection distances, etc. To solve the integrated problem, two types of tabu search algorithms, hierarchical and integrated ones, are suggested, and their test results are reported. In particular, the efficiency of the integrated approach is shown by comparing the two algorithm types.  相似文献   

4.
交通网络建设序列优化是交通规划中一个重要问题。文章对交通网络设计及其建设序列问题的研究现状进行了分析。按照网络建设中规划者和用户间的关系,以交通网络建设序列下的各阶段系统总费用作为上层规划,以各阶段的交通流用户平衡模型作为下层规划,建立了双层规划模型。并依照问题的特点,采用动态规划的求解方法进行探讨,而下层模型则采用了基于路径搜索的GP算法进行求解。并针对网络规划算例进行了计算,针对固定和变动客流OD两种情况下的结果进行了分析。计算的结果表明,问题的双层规划模型和动态规划求解算法能够为路网规划决策提供支持。  相似文献   

5.
We introduce in this paper an optimal method for tree network design avoiding congestion. We see this problem arising in telecommunication and transportation networks as a flow extension of the Steiner problem in directed graphs, thus including as a particular case any alternative approach based on the minimum spanning tree problem. Our multi-commodity formulation is able to cope with the design of centralized computer networks, modern multi-cast multi-party or hub-based transportation trees. The objective in such cases is the minimization of the sum of the fixed (structural) and variable (operational) costs of all the arcs composing an arborescence that links the origin node (switching center, server, station) to every demand node (multi-cast participants, users in general). The non-linear multi-commodity flow model is solved by a generalized Benders decomposition approach.  相似文献   

6.
With the advent of multibody system simulations (MSS) programs, it has become common practice to use computer modeling to evaluate vehicle dynamics performance. This approach has proved to be very effective for predicting the handling performance of vehicles; however, it has proved less successful for predicting the vehicle response at frequencies that are of interest in ride harshness and durability applications. The lack of correlation between theory and experiment can be partially traced back to tire models that are inadequate for rough road simulation. This paper presents a comprehensive vehicle dynamics model for simulating the dynamic response of ground vehicles on rough surfaces. This approach uses a MSS program to simulate the vehicle and a nonlinear FE program for the tires. Parallel processing of the tire models improves the efficiency of the overall simulation. Applications for this technology include vehicle ride and harshness analysis and durability loads simulation. This paper describes the MSS vehicle model, the tire FE model, and the interface which transfers data between the two simulations. Simulation and experiment results for a single tire without a vehicle encountering an obstacle and for a vehicle with four tires driving across a pot hole are presented. Conclusions and opportunities for further research end the paper.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(5-6):1846-1858
Continuous network design problem (CNDP) is to determine the set of link capacity expansions and the corresponding equilibrium flows for which the measures of performance index for the network is optimal. Conventionally, CNDP assumed users to be homogeneous, that is, all travelers on the same link of the network are identical insofar as congestion effect and they have the same value of time (VOT). In fact, it does not accord with the real situation that all have the same VOT. So, multiple user classes with different VOT should be considered. This paper examines the CNDP with different VOT for multiple user classes, which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). Then, the cut constraint algorithm (CCA) is presented to solve the problem. The numerical experiments on the examples from the literature are illustrated to demonstrate that our model and algorithm are feasible.  相似文献   

8.
The paper presents a bi-objective robust program to design a cost-responsiveness efficient emergency medical services (EMS) system under uncertainty. The proposed model simultaneously determines the location of EMS stations, the assignment of demand areas to EMS stations, and the number of EMS vehicles at each station to balance cost and responsiveness. We develop a robust counterpart approach to cope with the uncertain parameters in the EMS system. Extensive numerical studies are performed to demonstrate the benefits of our robust optimization approach.  相似文献   

9.
The paper presents a bi-objective integer program and an approximative lexicographic approach for a bicriterion loading and routing problem in a flexible assembly system. The problem objective is to determine an allocation of tasks among the assembly stations for a set of products so as to balance station workloads and minimize total interstation transfer time. In the approach proposed, first the station workloads are balanced using a linear relaxation-based heuristic and then assembly routes are selected based on a network flow model. An illustrative example is provided and some results of computational experiments are reported.  相似文献   

10.
Emergency Logistics Planning in Natural Disasters   总被引:14,自引:0,他引:14  
Logistics planning in emergency situations involves dispatching commodities (e.g., medical materials and personnel, specialised rescue equipment and rescue teams, food, etc.) to distribution centres in affected areas as soon as possible so that relief operations are accelerated. In this study, a planning model that is to be integrated into a natural disaster logistics Decision Support System is developed. The model addresses the dynamic time-dependent transportation problem that needs to be solved repetitively at given time intervals during ongoing aid delivery. The model regenerates plans incorporating new requests for aid materials, new supplies and transportation means that become available during the current planning time horizon. The plan indicates the optimal mixed pick up and delivery schedules for vehicles within the considered planning time horizon as well as the optimal quantities and types of loads picked up and delivered on these routes. In emergency logistics context, supply is available in limited quantities at the current time period and on specified future dates. Commodity demand is known with certainty at the current date, but can be forecasted for future dates. Unlike commercial environments, vehicles do not have to return to depots, because the next time the plan is re-generated, a node receiving commodities may become a depot or a former depot may have no supplies at all. As a result, there are no closed loop tours, and vehicles wait at their last stop until they receive the next order from the logistics coordination centre. Hence, dispatch orders for vehicles consist of sets of “broken” routes that are generated in response to time-dependent supply/demand. The mathematical model describes a setting that is considerably different than the conventional vehicle routing problem. In fact, the problem is a hybrid that integrates the multi-commodity network flow problem and the vehicle routing problem. In this setting, vehicles are also treated as commodities. The model is readily decomposed into two multi-commodity network flow problems, the first one being linear (for conventional commodities) and the second integer (for vehicle flows). In the solution approach, these sub-models are coupled with relaxed arc capacity constraints using Lagrangean relaxation. The convergence of the proposed algorithm is tested on small test instances as well as on an earthquake scenario of realistic size.  相似文献   

11.
We consider the combination of a network design and graph partitioning model in a multilevel framework for determining the optimal network expansion and the optimal zonal configuration of zonal pricing electricity markets, which is an extension of the model discussed in Grimm et al. (2019) that does not include a network design problem. The two classical discrete optimization problems of network design and graph partitioning together with nonlinearities due to economic modeling yield extremely challenging mixed-integer nonlinear multilevel models for which we develop two problem-tailored solution techniques. The first approach relies on an equivalent bilevel formulation and a standard KKT transformation thereof including novel primal-dual bound tightening techniques, whereas the second is a tailored generalized Benders decomposition. For the latter, we strengthen the Benders cuts of Grimm et al. (2019) by using the structure of the newly introduced network design subproblem. We prove for both methods that they yield global optimal solutions. Afterward, we compare the approaches in a numerical study and show that the tailored Benders approach clearly outperforms the standard KKT transformation. Finally, we present a case study that illustrates the economic effects that are captured in our model.  相似文献   

12.
This paper aims to model and investigate the discrete urban road network design problem, using a multi-objective time-dependent decision-making approach. Given a base network made up with two-way links, candidate link expansion projects, and candidate link construction projects, the problem determines the optimal combination of one-way and two-way links, the optimal selection of capacity expansion projects, and the optimal lane allocations on two-way links over a dual time scale. The problem considers both the total travel time and the total CO emissions as the two objective function measures. The problem is modelled using a time-dependent approach that considers a planning horizon of multiple years and both morning and evening peaks. Under this approach, the model allows determining the sequence of link construction, the expansion projects over a predetermined planning horizon, the configuration of street orientations, and the lane allocations for morning and evening peaks in each year of the planning horizon. This model is formulated as a mixed-integer programming problem with mathematical equilibrium constraints. In this regard, two multi-objective metaheuristics, including a modified non-dominated sorting genetic algorithm (NSGA-II) and a multi-objective B-cell algorithm, are proposed to solve the above-mentioned problem. Computational results for various test networks are also presented in this paper.  相似文献   

13.
In many underground mines, haulage vehicles carry ore from underground loading stations to the surface. Vehicles travel in narrow tunnels with occasional passing bays that allow descending empty vehicles to pull off the main path and wait for ascending laden vehicles to pass. The number of passing bays and their locations influence the delays to descending vehicles, and hence the haulage productivity of the mine. We formulate and solve a mixed integer programming (MIP) model to determine the optimal locations of passing bays to maximise haulage productivity for given numbers of vehicles and passing bays. The MIP also generates the corresponding vehicle schedule. Previous studies have only examined the placement of equally spaced bays. The results obtained from the MIP show that this is not always optimal. Furthermore, we observe that the best locations of passing bays are those that allow interleaving of vehicles without delays at bays.  相似文献   

14.
In this paper, we present an optimization model for integrating link-based discrete credit charging scheme into the discrete network design problem, to improve the transport performance from the perspectives of both transport network planning and travel demand management. The proposed model is a mixed-integer nonlinear bilevel programming problem, which includes an upper level problem for the transport authority and a lower level problem for the network users. The lower level sub-model is the traffic network user equilibrium (UE) formulation for a given network design strategy determined by the upper level problem. The network user at the lower level tries to minimize his/her own generalized travel cost (including both the travel time and the value of the credit charged for using the link) by choosing his/her route. While the transport authority at the upper level tries to find the optimal number of lanes and credit charging level with their locations to minimize the total system travel time (or maximize the transportation system performance). A genetic algorithm is used to solve the proposed mixed-integer nonlinear bilevel programming problem. Numerical experiments show the efficiency of the proposed model for traffic congestion mitigation, reveal that interaction effects across the tradable credit scheme and the discrete network design problem which amplify their individual effects. Moreover, the integrated model can achieve better performance than the sequential decision problems.  相似文献   

15.
A stochastic model is developed for an off-line station with a single berth in a computer-controlled vehicle system (CVS). Distributions of time intervals with departures of four types of vehicles from the station are derived by using conditional first passage-times between states on an aggregated Markov chain. We show an algorithm to allow a convenient analysis.  相似文献   

16.
Bike-sharing systems are becoming increasingly popular in large cities. The natural imbalance and the stochasticity of bike’s arrivals and departures lead operators to develop redistribution strategies in order to ensure a sufficiently high quality of service for users. Using a Markov decision process approach, we develop an implementable decision-support tool which may help the operator to decide at any point of time (i) which station should be prioritized, and (ii) which number of bikes should be added or removed at each station. Our objective is to minimize the rate of arrival of unsatisfied users who find their station empty or full. The existence of an optimal inventory level at each station is proven. It may vary over time but does not depend on the capacity of the truck which operates the repositioning. Next, we compute the relative value function of the system, together with the average cost and the optimal state. These results are used to derive a policy for station’s prioritization using a one-step policy improvement method. We evaluate our policy in comparison with the optimal one and with other intuitive ones in an extended version of our model. From our numerical experiments, we show that only a little intervention of the operator can significantly enhance the quality of service, and that the rule of thumb for bike repositioning is to prioritize the closer, the more active, the closer to be full or empty, and the more imbalanced stations if no reversing in the imbalance is anticipated.  相似文献   

17.
In the management and control of a vehicle fleet on a road network, the problem arises of finding the best route in relation to the mission of the fleet and to the typology of freight or users. Sometimes the route has to be adapted not only to current traffic conditions, but also to the physical, geometric and functional attributes of the roads, related to their urban location and environmental characteristics. This problem is approached here through an extension of the classic Shortest Path problem, named Resource Constrained Shortest Path problem (RCSP), where the resources are related to the road link attributes, assumed as relevant to the specific planning problem. A classification scheme of these attributes is first proposed and RCSP is described and reviewed. Next, a General Resource Constrained Shortest Path problem (GRCSP) is defined, which can be found in all cases where it is necessary to plan, statically or dynamically, the path of a vehicle and to respect a set of constraints expressed in terms of parameters and indices associated with the roads on the network. For this general problem a model has been formulated and a Branch and Cut solution approach is proposed. Computational results obtained on test and real networks during the experimentation of a fleet with low emission vehicles are also given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
An equilibrium network design (EQND) is a problem of finding the optimal design parameters while taking into account the route choice of users. This problem can be formulated as an optimization by taking the user equilibrium traffic assignment as a constraint. In this paper, the methods solving the EQND problem with signal settings are investigated via numerical calculations on two example road networks. An efficient algorithm is proposed in which improvement on a locally optimal search by combining the technique of parallel tangents with the gradient projection method is presented. As it shows, the method combines the locally optimal search and globally search heuristic achieved substantially better performance than did those other approaches.  相似文献   

19.
左静  窦祥胜 《运筹与管理》2020,29(1):124-130
由于受形态变化、光照变化、视觉碰撞和视觉模糊的影响,基于监控视频的车辆分类和计数一直都是待解决的复杂问题。为了更好地解决这个问题,本文提出新的模型来更好的提取前景。详细来讲,在初次前景提取中,建立模型判断是否存在车辆碰撞,对存在碰撞的车辆通过灰度空间双阀值和YCbCr图像空间处理后,对前景进行更准确的再提取。并在此基础上针对碰撞车辆,定义间隙特征向量将车辆分割问题转换为寻找分割点的优化问题,从而给出高效的车辆分割算法,对发生碰撞的车辆进行准确分割。之后利用神经网络对车辆分类,并设计一种基于已正确对碰撞车辆分割的算法对车辆计数。实验结果表明,本文提出的模型在视频车辆的分类和计数中取得优异的表现,并且数据处理速度能够满足及时性。比起人为计算车流量或建立三维模型等进行分析车辆碰撞情况下的车辆分类与计数,此方法兼顾了准确性与时效性,效率提高,成本减少。  相似文献   

20.
In this work, an emission-minimizing vehicle routing problem with heterogeneous vehicles and a heterogeneous road and traffic network is considered as it is typical in urban areas. Depending on the load of the vehicle, there exist multiple emission-minimal arcs for traveling between two locations. To solve the vehicle routing problem efficiently, a column generation approach is presented. At the core of the procedure an emission-oriented elementary shortest path problem on a multigraph is solved by a backward labeling algorithm. It is shown that the labeling algorithm can be sped up by adjusting the dual master program and by restricting the number of labels propagated in the sub-problem. The column generation technique is used to setup a fast heuristic as well as a branch-and-price algorithm. Both procedures are evaluated based on test instances with up to 100 customers. It turns out that the heuristic approach is very effective and generates near-optimal solutions with gaps below 0.1% on average while only requiring a fraction of the runtime of the exact approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号