首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a new general variable neighborhood search approach for the uncapacitated single allocation p-hub median problem in networks. This NP hard problem is concerned with locating hub facilities in order to minimize the traffic between all origin-destination pairs. We use three neighborhoods and efficiently update data structures for calculating new total flow in the network. In addition to the usual sequential strategy, a new nested strategy is proposed in designing a deterministic variable neighborhood descent local search. Our experimentation shows that general variable neighborhood search based heuristics outperform the best-known heuristics in terms of solution quality and computational effort. Moreover, we improve the best-known objective values for some large Australia Post and PlanetLab instances. Results with the new nested variable neighborhood descent show the best performance in solving very large test instances.  相似文献   

2.
We present a variable neighborhood search approach for solving the one-commodity pickup-and-delivery travelling salesman problem. It is characterized by a set of customers such that each of the customers either supplies (pickup customers) or demands (delivery customers) a given amount of a single product, and by a vehicle, whose given capacity must not be exceeded, that starts at the depot and must visit each customer only once. The objective is to minimize the total length of the tour. Thus, the considered problem includes checking the existence of a feasible travelling salesman’s tour and designing the optimal travelling salesman’s tour, which are both NP-hard problems. We adapt a collection of neighborhood structures, k-opt, double-bridge and insertion operators mainly used for solving the classical travelling salesman problem. A binary indexed tree data structure is used, which enables efficient feasibility checking and updating of solutions in these neighborhoods. Our extensive computational analysis shows that the proposed variable neighborhood search based heuristics outperforms the best-known algorithms in terms of both the solution quality and computational efforts. Moreover, we improve the best-known solutions of all benchmark instances from the literature (with 200 to 500 customers). We are also able to solve instances with up to 1000 customers.  相似文献   

3.
The capacitated arc routing problem (CARP) focuses on servicing edges of an undirected network graph. A wide spectrum of applications like mail delivery, waste collection or street maintenance outlines the relevance of this problem. A realistic variant of the CARP arises from the need of intermediate facilities (IFs) to load up or unload the service vehicle and from tour length restrictions. The proposed Variable Neighborhood Search (VNS) is a simple and robust solution technique which tackles the basic problem as well as its extensions. The VNS shows excellent results on four different benchmark sets. Particularly, for all 120 instances the best known solution could be found and in 71 cases a new best solution was achieved.  相似文献   

4.
A variable neighborhood search heuristic for periodic routing problems   总被引:1,自引:0,他引:1  
The aim of this paper is to propose a new heuristic for the Periodic Vehicle Routing Problem (PVRP) without time windows. The PVRP extends the classical Vehicle Routing Problem (VRP) to a planning horizon of several days. Each customer requires a certain number of visits within this time horizon while there is some flexibility on the exact days of the visits. Hence, one has to choose the visit days for each customer and to solve a VRP for each day. Our method is based on Variable Neighborhood Search (VNS). Computational results are presented, that show that our approach is competitive and even outperforms existing solution procedures proposed in the literature. Also considered is the special case of a single vehicle, i.e. the Periodic Traveling Salesman Problem (PTSP). It is shown that slight changes of the proposed VNS procedure is also competitive for the PTSP.  相似文献   

5.
This paper presents variable neighborhood search (VNS) for the problem of finding the global minimum of a nonconvex function. The variable neighborhood search, which changes systematically neighborhood structures in the search for finding a better solution, is used to guide a set of standard improvement heuristics. This algorithm was tested on some standard test functions, and successful results were obtained. Its performance was compared with the other algorithms, and observed to be better.  相似文献   

6.
Flexible discrete location problems are a generalization of most classical discrete locations problems like p-median or p-center problems. They can be modeled by using so-called ordered median functions. These functions multiply a weight to the cost of fulfilling the demand of a customer, which depends on the position of that cost relative to the costs of fulfilling the demand of other customers.In this paper a covering type of model for the discrete ordered median problem is presented. For the solution of this model two sets of valid inequalities, which reduces the number of binary variables tremendously, and several variable fixing strategies are identified. Based on these concepts a specialized branch & cut procedure is proposed and extensive computational results are reported.  相似文献   

7.
This paper presents a solution methodology for the heterogeneous fleet vehicle routing problem with time windows. The objective is to minimize the total distribution costs, or similarly to determine the optimal fleet size and mix that minimizes both the total distance travelled by vehicles and the fixed vehicle costs, such that all problem’s constraints are satisfied. The problem is solved using a two-phase solution framework based upon a hybridized Tabu Search, within a new Reactive Variable Neighborhood Search metaheuristic algorithm. Computational experiments on benchmark data sets yield high quality solutions, illustrating the effectiveness of the approach and its applicability to realistic routing problems. This work is supported by the General Secretariat for Research and Technology of the Hellenic Ministry of Development under contract GSRT NM-67.  相似文献   

8.
In this paper we present two major approaches to solve the car sequencing problem, in which the goal is to find an optimal arrangement of commissioned vehicles along a production line with respect to constraints of the form “no more than lccars are allowed to require a component c in any subsequence of mcconsecutive cars”. The first method is an exact one based on integer linear programming (ILP). The second approach is hybrid: it uses ILP techniques within a general variable neighborhood search (VNS) framework for examining large neighborhoods. We tested the two methods on benchmark instances provided by CSPLIB and the automobile manufacturer RENAULT for the ROADEF Challenge 2005. These tests reveal that our approaches are competitive to previous reported algorithms. For the CSPLIB instances we were able to shorten the required computation time for reaching and proving optimality. Furthermore, we were able to obtain tight bounds on some of the ROADEF instances. For two of these instances the proposed ILP-method could provide new optimality proofs for already known solutions. For the VNS, the individual contributions of the used neighborhoods are also experimentally analyzed. Results highlight the significant impact of each structure. In particular the large ones examined using ILP techniques enhance the overall performance significantly, so that the hybrid approach clearly outperforms variants including only commonly defined neighborhoods.  相似文献   

9.
In this article we investigate a new variant of Variable Neighborhood Search (VNS): Relaxation Guided Variable Neighborhood Search. It is based on the general VNS scheme and a new Variable Neighborhood Descent (VND) algorithm. The ordering of the neighborhood structures in this VND is determined dynamically by solving relaxations of them. The objective values of these relaxations are used as indicators for the potential gains of searching the corresponding neighborhoods. We tested this new approach on the well-studied multidimensional knapsack problem. Computational experiments show that our approach is beneficial to the search, improving the obtained results. The concept is, in principle, more generally applicable and seems to be promising for many other combinatorial optimization problems approached by VNS. NICTA is funded by the Australian Government’s Backing Australia’s Ability initiative, in part through the Australian Research Council.The Institute of Computer Graphics and Algorithms is supported by the European RTN ADONET under grant 504438.  相似文献   

10.
In this study, we improved the variable neighborhood search (VNS) algorithm for solving uncapacitated multilevel lot-sizing (MLLS) problems. The improvement is twofold. First, we developed an effective local search method known as the Ancestors Depth-first Traversal Search (ADTS), which can be embedded in the VNS to significantly improve the solution quality. Second, we proposed a common and efficient approach for the rapid calculation of the cost change for the VNS and other generate-and-test algorithms. The new VNS algorithm was tested against 176 benchmark problems of different scales (small, medium, and large). The experimental results show that the new VNS algorithm outperforms all of the existing algorithms in the literature for solving uncapacitated MLLS problems because it was able to find all optimal solutions (100%) for 96 small-sized problems and new best-known solutions for 5 of 40 medium-sized problems and for 30 of 40 large-sized problems.  相似文献   

11.
We suggest a new heuristic for solving unconstrained continuous optimization problems. It is based on a generalized version of the variable neighborhood search metaheuristic. Different neighborhoods and distributions, induced from different metrics are ranked and used to get random points in the shaking step. We also propose VNS for solving constrained optimization problems. The constraints are handled using exterior point penalty functions within an algorithm that combines sequential and exact penalty transformations. The extensive computer analysis that includes the comparison with genetic algorithm and some other approaches on standard test functions are given. With our approach we obtain encouraging results.  相似文献   

12.
In this paper we present two new heuristic approaches to solve the Discrete Ordered Median Problem (DOMP). Described heuristic methods, named HGA1 and HGA2 are based on a hybrid of genetic algorithms (GA) and a generalization of the well-known Fast Interchange heuristic (GFI). In order to investigate the effect of encoding on GA performance, two different encoding schemes are implemented: binary encoding in HGA1, and integer representation in HGA2. If binary encoding is used (HGA1), new genetic operators that keep the feasibility of individuals are proposed. Integer representation keeps the individuals feasible by default, so HGA2 uses slightly modified standard genetic operators. In both methods, caching GA technique was integrated with the GFI heuristic to improve computational performance. The algorithms are tested on standard ORLIB p-median instances with up to 900 nodes. The obtained results are also compared with the results of existing methods for solving DOMP in order to assess their merits.  相似文献   

13.
We consider the generalized version of the classical Minimum Spanning Tree problem where the nodes of a graph are partitioned into clusters and exactly one node from each cluster must be connected. We present a Variable Neighborhood Search (VNS) approach which uses three different neighborhood types. Two of them work in complementary ways in order to maximize search effectivity. Both are large in the sense that they contain exponentially many candidate solutions, but efficient polynomial-time algorithms are used to identify best neighbors. For the third neighborhood type we apply Mixed Integer Programming to optimize local parts within candidate solution trees. Tests on Euclidean and random instances with up to 1280 nodes indicate especially on instances with many nodes per cluster significant advantages over previously published metaheuristic approaches. This work is supported by the RTN ADONET under grant 504438.  相似文献   

14.
This paper considers the application of a variable neighborhood search (VNS) algorithm for finite-horizon (H stages) Markov Decision Processes (MDPs), for the purpose of alleviating the “curse of dimensionality” phenomenon in searching for the global optimum. The main idea behind the VNSMDP algorithm is that, based on the result of the stage just considered, the search for the optimal solution (action) of state x in stage t is conducted systematically in variable neighborhood sets of the current action. Thus, the VNSMDP algorithm is capable of searching for the optimum within some subsets of the action space, rather than over the whole action set. Analysis on complexity and convergence attributes of the VNSMDP algorithm are conducted in the paper. It is shown by theoretical and computational analysis that, the VNSMDP algorithm succeeds in searching for the global optimum in an efficient way.  相似文献   

15.
Given a set of customer orders and a routing policy, the goal of the order-batching problem?(OBP) is to group customer orders to picking orders (batches) such that the total length of all tours through a rectangular warehouse is minimized. Because order picking is considered the most labor-intensive process in warehousing, effectively batching customer orders can result in considerable savings. The OBP is NP-hard if the number of orders per batch is greater than two, and the exact solution methods proposed in the literature are not able to consistently solve larger instances. To address larger instances, we develop a metaheuristic hybrid based on adaptive large neighborhood search and tabu search, called ALNS/TS. In numerical studies, we conduct an extensive comparison of ALNS/TS to all previously published OBP methods that have used standard benchmark sets to investigate their performance. ALNS/TS outperforms all comparison methods with respect to both average solution quality and run-time. Compared to the state-of-the-art, ALNS/TS shows the clearest advantages on the larger instances of the existing benchmark sets, which assume a higher number of customer orders and higher capacities of the picking device. Finally, ALNS/TS is able to solve newly generated large-scale instances with up to 600 customer orders and six articles per customer order with reasonable run-times and convincing scaling behavior and robustness.  相似文献   

16.
Variable neighborhood search: Principles and applications   总被引:5,自引:0,他引:5  
Systematic change of neighborhood within a possibly randomized local search algorithm yields a simple and effective metaheuristic for combinatorial and global optimization, called variable neighborhood search (VNS). We present a basic scheme for this purpose, which can easily be implemented using any local search algorithm as a subroutine. Its effectiveness is illustrated by solving several classical combinatorial or global optimization problems. Moreover, several extensions are proposed for solving large problem instances: using VNS within the successive approximation method yields a two-level VNS, called variable neighborhood decomposition search (VNDS); modifying the basic scheme to explore easily valleys far from the incumbent solution yields an efficient skewed VNS (SVNS) heuristic. Finally, we show how to stabilize column generation algorithms with help of VNS and discuss various ways to use VNS in graph theory, i.e., to suggest, disprove or give hints on how to prove conjectures, an area where metaheuristics do not appear to have been applied before.  相似文献   

17.
We introduce a heuristic for the Multi-Resource Generalized Assignment Problem (MRGAP) based on the concepts of Very Large-Scale Neighborhood Search and Variable Neighborhood Search. The heuristic is a simplified version of the Very Large-Scale Variable Neighborhood Search for the Generalized Assignment Problem. Our algorithm can be viewed as a k-exchange heuristic; but unlike traditional k-exchange algorithms, we choose larger values of k resulting in neighborhoods of very large size with high probability. Searching this large neighborhood (approximately) amounts to solving a sequence of smaller MRGAPs either by exact algorithms or by heuristics. Computational results on benchmark test problems are presented. We obtained improved solutions for many instances compared to some of the best known heuristics for the MRGAP within reasonable running time. The central idea of our heuristic can be used to develop efficient heuristics for other hard combinatorial optimization problems as well.  相似文献   

18.
Given a set S={S 1,…,S k } of finite strings, the k-Longest Common Subsequence Problem (k-LCSP) seeks a string L * of maximum length such that L * is a subsequence of each S i for i=1,…,k. This paper presents a large neighborhood search technique that provides quality solutions to large k-LCSP instances. This heuristic runs in linear time in both the length of the sequences and the number of sequences. Some computational results are provided.  相似文献   

19.
Euclidean Minimum Sum-of-Squares Clustering amounts to finding p prototypes by minimizing the sum of the squared Euclidean distances from a set of points to their closest prototype. In recent years related clustering problems have been extensively analyzed under the assumption that the space is a network, and not any more the Euclidean space. This allows one to properly address community detection problems, of significant relevance in diverse phenomena in biological, technological and social systems. However, the problem of minimizing the sum of squared distances on networks have not yet been addressed. Two versions of the problem are possible: either the p prototypes are sought among the set of nodes of the network, or also points along edges are taken into account as possible prototypes. While the first problem is transformed into a classical discrete p-median problem, the latter is new in the literature, and solved in this paper with the Variable Neighborhood Search heuristic. The solutions of the two problems are compared in a series of test examples.  相似文献   

20.
The minimum weighted k-cardinality subgraph problem consists of finding a connected subgraph of a given graph with exactly k edges whose sum of weights is minimum. For this NP-hard combinatorial problem, only constructive types of heuristics have been suggested in the literature. In this paper we propose a new heuristic based on variable neighborhood search metaheuristic rules. This procedure uses a new local search developed by us. Extensive numerical results that include graphs with up to 5,000 vertices are reported. It appears that VNS outperforms all previous methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号