首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barış Çiftçi  Stef Tijs 《TOP》2009,17(2):440-453
In this paper, we consider spanning tree situations, where players want to be connected to a source as cheap as possible. These situations involve the construction of a spanning tree with the minimum cost as well as the allocation of the cost of this minimum cost spanning tree among its users in a fair way. Feltkamp, Muto and Tijs 1994 introduced the equal remaining obligations rule to solve the cost allocation problem in these situations. Recently, it has been shown that the equal remaining obligations rule satisfies many appealing properties and can be obtained with different approaches. In this paper, we provide a new approach to obtain the equal remaining obligations rule. Specifically, we show that the equal remaining obligations rule can be obtained as the average of the cost allocations provided by a vertex oriented construct-and-charge procedure for each order of players.  相似文献   

2.
In the context of minimum cost spanning tree problems, we present a bargaining mechanism for connecting all agents to the source and dividing the cost among them. The basic idea is very simple: we ask each agent the part of the cost he is willing to pay for an arc to be constructed. We prove that there exists a unique payoff allocation associated with the subgame perfect Nash equilibria of this bargaining mechanism. Moreover, this payoff allocation coincides with the rule defined in Bergantiños and Vidal-Puga [Bergantiños, G., Vidal-Puga, J.J., 2007a. A fair rule in minimum cost spanning tree problems. Journal of Economic Theory 137, 326–352].  相似文献   

3.
In this paper we provide an axiomatic characterization of the folk rule for minimum cost spanning tree problems with multiple sources. The properties we need are: cone-wise additivity, cost monotonicity, symmetry, isolated agents, and equal treatment of source costs.  相似文献   

4.
In the context of cost sharing in minimum cost spanning tree problems, we introduce a property called merge-proofness. This property says that no group of agents can be better off claiming to be a single node. We show that the sharing rule that assigns to each agent his own connection cost (the Bird rule) satisfies this property. Moreover, we provide a characterization of the Bird rule using merge-proofness.  相似文献   

5.
Boruvka’s algorithm, which computes a minimum cost spanning tree, is used to define a rule to share the cost among the nodes (agents). We show that this rule coincides with the folk solution, a very well-known rule of this literature.  相似文献   

6.
Cost spanning tree problems concern the construction of a tree which provides a connection with the source for every node of the network. In this paper, we address cost sharing problems associated to these situations when the agents located at the nodes act in a non-cooperative way. A class of strategies is proposed which produce minimum cost spanning trees and, at the same time, are strong Nash equilibria for a non-cooperative game associated to the problem. They are also subgame perfect Nash equilibria.  相似文献   

7.
In this paper we consider the minimum cost spanning tree model. We assume that a central planner aims at implementing a minimum cost spanning tree not knowing the true link costs. The central planner sets up a game where agents announce link costs, a tree is chosen and costs are allocated according to the rules of the game. We characterize ways of allocating costs such that true announcements constitute Nash equilibria both in case of full and incomplete information. In particular, we find that the Shapley rule based on the irreducible cost matrix is consistent with truthful announcements while a series of other well-known rules (such as the Bird-rule, Serial Equal Split, and the Proportional rule) are not.  相似文献   

8.
In this paper, we analyze cost sharing problems arising from a general service by explicitly taking into account the generated revenues. To this cost-revenue sharing problem, we associate a cooperative game with transferable utility, called cost-revenue game. By considering cooperation among the agents using the general service, the value of a coalition is defined as the maximum net revenues that the coalition may obtain by means of cooperation. As a result, a coalition may profit from not allowing all its members to get the service that generates the revenues. We focus on the study of the core of cost-revenue games. Under the assumption that cooperation among the members of the grand coalition grants the use of the service under consideration to all its members, it is shown that a cost-revenue game has a nonempty core for any vector of revenues if, and only if, the dual game of the cost game has a large core. Using this result, we investigate minimum cost spanning tree games with revenues. We show that if every connection cost can take only two values (low or high cost), then, the corresponding minimum cost spanning tree game with revenues has a nonempty core. Furthermore, we provide an example of a minimum cost spanning tree game with revenues with an empty core where every connection cost can take only one of three values (low, medium, or high cost).  相似文献   

9.
An arborescence of a multihop radio network is a directed spanning tree (with rootx) such that the edges are directed away from the root. Based upon an arborescence,x canbroadcast a message to other nodes according to the directed edges of the spanning tree. The minimum transmission power arborescence problem is to find an arborescence such that the message can be broadcasted to other nodes by using a minimal amount of transmission power. The minimum delay arborescence problem is to find an arborescence such that a message can be broadcasted to other nodes by using a minimal number of broadcast transmission. In this paper we show that both these problems areNP-complete. The reductions are from the maximum leaf spanning tree problem.Areverse arborescence is similar to an arborescence except that the edges are directed toward the root. Based upon a reverse arborescence, the root node cancollect information from other nodes. In this paper we also show that the reverse minimum transmission power arborescence problem can be solved with the same computational complexity as that of finding a minimum cost spanning tree, and the reverse minimum delay arborescence problem can be solved with the same computational complexity as that of finding a spanning tree.  相似文献   

10.
On the inverse problem of minimum spanning tree with partition constraints   总被引:5,自引:0,他引:5  
In this paper we first discuss the properties of minimum spanning tree and minimum spanning tree with partition constraints. We then concentrate on the inverse problem of minimum spanning tree with partition constraints in which we need to adjust the weights of the edges in a network as less as possible so that a given spanning tree becomes the minimum one among all spanning trees that satisfy the partition restriction. Based on the calculation of maximum cost flow in networks, we propose a strongly polynomial algorithm for solving the problem.The author gratefully acknowledges the partial support of Croucher Foundation.  相似文献   

11.
The capacitated minimum spanning tree (CMST) problem is to find a minimum cost spanning tree in a network where nodes have specified demands, with an additional capacity constraints on the subtrees incident to a given source node s. The capacitated minimum spanning tree problem arises as an important subproblem in many telecommunication network design problems. In a recent paper, Ahuja et al. (Math. Program. 91 (2001) 71) proposed two very large-scale neighborhood search algorithms for the capacitated minimum spanning tree problem. Their first node-based neighborhood structure is obtained by performing multi-exchanges involving several trees where each tree contributes a single node. Their second tree-based neighborhood structure is obtained by performing multi-exchanges where each tree contributes a subtree. The computational investigations found that node-based multi-exchange neighborhood gives the best performance for the homogenous demand case (when all nodes have the same demand), and the tree-based multi-exchange neighborhood gives the best performance for the heterogeneous demand case (when nodes may have different demands). In this paper, we propose a composite neighborhood structure that subsumes both the node-based and tree-based neighborhoods, and outperforms both the previous neighborhood search algorithms for solving the capacitated minimum spanning tree problem on standard benchmark instances. We also develop improved dynamic programming based exact algorithms for searching the composite neighborhood.  相似文献   

12.
Genetic algorithms and other evolutionary algorithms have been successfully applied to solve constrained minimum spanning tree problems in a variety of communication network design problems. In this paper, we enlarge the application of these types of algorithms by presenting a multi-population hybrid genetic algorithm to another communication design problem. This new problem is modeled through a hop-constrained minimum spanning tree also exhibiting the characteristic of flows. All nodes, except for the root node, have a nonnegative flow requirement. In addition to the fixed charge costs, nonlinear flow dependent costs are also considered. This problem is an extension of the well know NP-hard hop-constrained Minimum Spanning Tree problem and we have termed it hop-constrained minimum cost flow spanning tree problem. The efficiency and effectiveness of the proposed method can be seen from the computational results reported.  相似文献   

13.
本文针对传统的基于边的最小支撑树逆问题,提出了一类基于点边更新策略的最小支撑树逆问题.更新一个点是指减少与此点相关联的某些边的权值.根据是否含有更新点的费用,考虑了两类模型,它们均可转化为森林上的最小(费用)点覆盖的求解问题,算法的复杂性都是O(mn),其中m=|E|n=|V|。  相似文献   

14.
Minimum Global Height支撑树及相关问题   总被引:2,自引:0,他引:2  
本文研究了两个组合优化问题:minimum g1obal height支撑树和minimum aveageheight支撑树问题.利用3SAT问题的时间复杂性,本文证明了这两个问题都是NP-hard的,并分别给出了一个算法,即(mgh)-算法和(mah)-算法.在非负网络中,这两个算法的时间复杂性都为O(n3).利用第一个问题的复杂性,本文证明了minimum height支撑树问题也是NP-hard的,从而纠正了有关文献中的一个错误结论.  相似文献   

15.
This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree using edges that are as similar as possible. Given an undirected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning tree whose edges have the smallest number of distinct labels. This problem has been shown to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algorithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method. Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform the other algorithms tested. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristics.  相似文献   

16.
We consider the class of Obligation rules for minimum cost spanning tree situations. The main result of this paper is that such rules are cost monotonic and induce also population monotonic allocation schemes. Another characteristic of Obligation rules is that they assign to a minimum cost spanning tree situation a vector of cost contributions which can be obtained as product of a double stochastic matrix with the cost vector of edges in the optimal tree provided by the Kruskal algorithm. It turns out that the Potters value (P-value) is an element of this class.  相似文献   

17.
Each directed graph with asymmetric costs defined over its arcs can be represented by a matrix or table, called an expansion table. We explore first the basic properties of cycles and spanning tables of expansion tables, which correspond to the cycles and spanning trees of the directed graph. Then, we derive an algorithm to find a minimum spanning table which corresponds to a minimum spanning tree in the directed graph. Finally, we discuss how to use the algorithm to find the optimal competence set expansion and also discuss related problems.  相似文献   

18.
In this paper, we present results dealing with properties of well-known geometric random problems in the plane, together with their motivations. The paper specifically concentrates on the traveling salesman and minimum spanning tree problems, even though most of the results apply to other problems such as the Steiner tree problem and the minimum weight matching problem.  相似文献   

19.
Comparison of Algorithms for the Degree Constrained Minimum Spanning Tree   总被引:4,自引:0,他引:4  
The Degree Constrained Minimum Spanning Tree (DCMST) on a graph is the problem of generating a minimum spanning tree with constraints on the number of arcs that can be incident to vertices of the graph. In this paper we develop three heuristics for the DCMST, including simulated annealing, a genetic algorithm and a method based on problem space search. We propose alternative tree representations to facilitate the neighbourhood searches for the genetic algorithm. The tree representation that we use for the genetic algorithm can be generalised to other tree optimisation problems as well. We compare the computational performance of all of these approaches against the performance of an exact solution approach in the literature. In addition, we also develop a new exact solution approach based on the combinatorial structure of the problem. We test all of these approaches using standard problems taken from the literature and some new test problems that we generate.  相似文献   

20.
In this paper, we introduce the problem of computing a minimum edge ranking spanning tree (MERST); i.e., find a spanning tree of a given graph G whose edge ranking is minimum. Although the minimum edge ranking of a given tree can be computed in polynomial time, we show that problem MERST is NP-hard. Furthermore, we present an approximation algorithm for MERST, which realizes its worst case performance ratio where n is the number of vertices in G and Δ* is the maximum degree of a spanning tree whose maximum degree is minimum. Although the approximation algorithm is a combination of two existing algorithms for the restricted spanning tree problem and for the minimum edge ranking problem of trees, the analysis is based on novel properties of the edge ranking of trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号