首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a two-stage stochastic 0-1 modeling and a related algorithmic approach for Supply Chain Management under uncertainty, whose goal consists of determining the production topology, plant sizing, product selection, product allocation among plants and vendor selection for raw materials. The objective is the maximization of the expected benefit given by the product net profit over the time horizon minus the investment depreciation and operations costs. The main uncertain parameters are the product net price and demand, the raw material supply cost and the production cost. The first stage is included by the strategic decisions. The second stage is included by the tactical decisions. A tight 0-1 model for the deterministic version is presented. A splitting variable mathematical representation via scenario is presented for the stochastic version of the model. A two-stage version of a Branch and Fix Coordination (BFC) algorithmic approach is proposed for stochastic 0-1 program solving, and some computational experience is reported for cases with dozens of thousands of constraints and continuous variables and hundreds of 0-1 variables.  相似文献   

2.
A new scheme for dealing with uncertainty in scenario trees is presented for dynamic mixed 0–1 optimization problems with strategic and operational stochastic parameters. Let us generically name this type of problems as capacity expansion planning (CEP) in a given system, e.g., supply chain, production, rapid transit network, energy generation and transmission network, etc. The strategic scenario tree is usually a multistage one, and the replicas of the strategic nodes root structures in the form of either a special scenario graph or a two-stage scenario tree, depending on the type of operational activity in the system. Those operational scenario structures impact in the constraints of the model and, thus, in the decomposition methodology for solving usually large-scale problems. This work presents the modeling framework for some of the risk neutral and risk averse measures to consider for CEP problem solving. Two types of risk averse measures are considered. The first one is a time-inconsistent mixture of the chance-constrained and second-order stochastic dominance (SSD) functionals of the value of a given set of functions up to the strategic nodes in selected stages along the time horizon, The second type is a strategic node-based time-consistent SSD functional for the set of operational scenarios in the strategic nodes at selected stages. A specialization of the nested stochastic decomposition methodology for that problem solving is outlined. Its advantages and drawbacks as well as the framework for some schemes to, at least, partially avoid those drawbacks are also presented.  相似文献   

3.
We present a model for optimizing a mean-risk function of the terminal wealth for a fixed income asset portfolio restructuring with uncertainty in the interest rate path and the liabilities along a given time horizon. Some logical constraints are considered to be satisfied by the assets portfolio. Uncertainty is represented by a scenario tree and is dealt with by a multistage stochastic mixed 0-1 model with complete recourse. The problem is modelled as a splitting variable representation of the Deterministic Equivalent Model for the stochastic model, where the 0-1 variables and the continuous variables appear at any stage. A Branch-and-Fix Coordination approach for the multistage 0–1 program solving is proposed. Some computational experience is reported.   相似文献   

4.
Robust optimization (RO) is a distribution-free worst-case solution methodology designed for uncertain maximization problems via a max-min approach considering a bounded uncertainty set. It yields a feasible solution over this set with a guaranteed worst-case value. As opposed to a previous conception that RO is conservative based on optimal value analysis, we argue that in practice the uncertain parameters rarely take simultaneously the values of the worst-case scenario, and thus introduce a new performance measure based on simulated average values. To this end, we apply the adjustable RO (AARC) to a single new product multi-period production planning problem under an uncertain and bounded demand so as to maximize the total profit. The demand for the product is assumed to follow a typical life-cycle pattern, whose length is typically hard to anticipate. We suggest a novel approach to predict the production plan’s profitable cycle length, already at the outset of the planning horizon. The AARC is an offline method that is employed online and adjusted to past realizations of the demand by a linear decision rule (LDR). We compare it to an alternative offline method, aiming at maximum expected profit, applying the same LDR. Although the AARC maximizes the profit against a worst-case demand scenario, our empirical results show that the average performance of both methods is very similar. Further, AARC consistently guarantees a worst profit over the entire uncertainty set, and its model’s size is considerably smaller and thus exhibit superior performance.  相似文献   

5.
We address a multi-category workforce planning problem for functional areas located at different service centres, each having office-space and recruitment capacity constraints, and facing fluctuating and uncertain workforce demand. A deterministic model is initially developed to deal with workforce fluctuations based on an expected demand profile over the horizon. To hedge against the demand uncertainty, we also propose a two-stage stochastic program, in which the first stage makes personnel recruiting and allocation decisions, while the second stage reassigns workforce demand among all units. A Benders’ decomposition-based algorithm is designed to solve this two-stage stochastic mixed-integer program. Computational results based on some practical numerical experiments are presented to provide insights on applying the deterministic versus the stochastic programming approach, and to demonstrate the efficacy of the proposed algorithm as compared with directly solving the model using its deterministic equivalent.  相似文献   

6.
Abstract We consider a model of a fishery in which the dynamics of the unharvested fish population are given by the stochastic logistic growth equation Similar to the classical deterministic analogon, we assume that the fishery harvests the fish population following a constant effort strategy. In the first step, we derive the effort level that leads to maximum expected sustainable yield, which is understood as the expectation of the equilibrium distribution of the stochastic dynamics. This replaces the nonzero fixed point in the classical deterministic setup. In the second step, we assume that the fishery is risk averse and that there is a tradeoff between expected sustainable yield and uncertainty measured in terms of the variance of the equilibrium distribution. We derive the optimal constant effort harvesting strategy for this problem. In the final step, we consider an approach that we call the mean‐variance analysis to sustainable fisheries. Similar as in the now classical mean‐variance analysis in finance, going back to Markowitz [1952] , we study the problem of maximizing expected sustainable yields under variance constraints, and with this, minimizing the variance, e.g., risk, under guaranteed minimum expected sustainable yields. We derive explicit formulas for the optimal fishing effort in all four problems considered and study the effects of uncertainty, risk aversion, and mean reversion speed on fishing efforts.  相似文献   

7.
Estimation errors or uncertainities in expected return and risk measures create difficulties for portfolio optimization. The literature deals with the uncertainty using stochastic, fuzzy or probability programming. This paper proposes a new approach to treating uncertainty. By assuming that the expected return and risk vary within a bounded interval, this paper uses interval analysis to extend the classical mean-variance portfolio optimization problem to the cases with bounded uncertainty. To solve the interval quadratic programming problem, the paper adopts order relations to transform the uncertain programme into a deterministic programme, and includes the investors’ risk preference into the model. Numerical analysis illustrates the advantage of this new approach against conventional methods.  相似文献   

8.
In air cargo transportation, capacity can be reserved via allotment, which are long-term contracts with fixed price, and free, which is the space not assigned to allotment contracts. In this later case, reservations are made closer to the departure date, and normally higher tariffs are charged. The demand, the tariff, and the show-up rate for the free mode are stochastic. We consider risk neutral and risk averse formulations, using the Conditional Value-at-Risk as a risk measure. We solve the resulting problems using the Sample Average Approximation and test our models with nine experiments representing different demand patterns using real data from a major airline.  相似文献   

9.
通过建立考虑大数据营销及零售商风险规避的博弈模型,对绿色供应链定价、产品绿色度及利润进行比较分析。研究发现:无论集中决策、双方风险中性分散决策还是仅零售商风险规避分散决策,考虑大数据营销时的供应链整体期望利润和产品绿色度较高,且大数据营销效率因子对产品绿色度的增加有正向作用;双方风险中性分散决策下,一定条件下,两部定价契约能够有效协调供应链整体利润,实现帕累托改进;仅零售商风险规避分散决策下,零售商的风险规避行为会降低其对大数据营销的投入,一定条件下,两部定价契约也能够实现供应链整体期望利润的帕累托改进。  相似文献   

10.
研究每个周期的需求随机增加的情形下的容量扩充问题,建立起切合实际的有限周期随机动态规划模型及在期现值准则下的无限周期随机动态规划模型,进而探索生产单一产品的公司在面对随机增加的市场需求时,风险中立的管理者该如何扩充其生产容量,才能使得其公司在折扣意义下的总期望利润最大.研究无限阶段的容量扩充问题,得出某种约束条件下的优化策略解,给公司管理者提供了其长期可持续发展的优化策略和依据.  相似文献   

11.
A two-stage stochastic programming with recourse model for the problem of determining optimal planting plans for a vegetable crop is presented in this paper. Uncertainty caused by factors such as weather on yields is a major influence on many systems arising in horticulture. Traditional linear programming models are generally unsatisfactory in dealing with the uncertainty and produce solutions that are considered to involve an unacceptable level of risk. The first stage of the model relates to finding a planting plan which is common to all scenarios and the second stage is concerned with deriving a harvesting schedule for each scenario. Solutions are obtained for a range of risk aversion factors that not only result in greater expected profit compared to the corresponding deterministic model, but also are more robust.  相似文献   

12.
This paper proposes a Conditional Value-at-Risk Minimization (CVaRM) approach to optimize an insurer’s product mix. By incorporating the natural hedging strategy of Cox and Lin (2007) and the two-factor stochastic mortality model of Cairns et al. (2006b), we calculate an optimize product mix for insurance companies to hedge against the systematic mortality risk under parameter uncertainty. To reflect the importance of required profit, we further integrate the premium loading of systematic risk. We compare the hedging results to those using the duration match method of Wang et al. (forthcoming), and show that the proposed CVaRM approach has a narrower quantile of loss distribution after hedging—thereby effectively reducing systematic mortality risk for life insurance companies.  相似文献   

13.
The forest harvest and road construction planning problem consists fundamentally of managing land designated for timber production and divided into harvest cells. For each time period the planner must decide which cells to cut and what access roads to build in order to maximize expected net profit. We have previously developed deterministic mixed integer linear programming models for this problem. The main contribution of the present work is the introduction of a multistage Stochastic Integer Programming model. This enables the planner to make more robust decisions based on a range of timber price scenarios over time, maximizing the expected value instead of merely analyzing a single average scenario. We use a specialization of the Branch-and-Fix Coordination algorithmic approach. Different price and associated probability scenarios are considered, allowing us to compare expected profits when uncertainties are taken into account and when only average prices are used. The stochastic approach as formulated in this work generates solutions that were always feasible and better than the average solution, while the latter in many scenarios proved to be infeasible.  相似文献   

14.
This paper investigates second best policies to regulate nitrogen leaching. When the policy maker controls the total nitrogen use, an overall tax is superior to an action equivalent overall quota. When the goal is to regulate the expected level of nitrogen leaching, expected profit of a risk neutral farmer is greater under an overall tax than under an overall quota under a reasonable condition. The welfare ranking of action equivalent taxes and quotas for a risk averse farmer is generally ambiguous. In the numerical analyses, overall taxes turned out to be superior to overall quotas with both targets, despite a very high value of absolute risk aversion, 0.01. These results suggest that an overall tax is probably a superior policy to an overall quota to regulate expected total nitrogen use or expected nitrogen leaching for risk neutral and most of risk averse farmers.  相似文献   

15.
We propose a stochastic model for the daily operation scheduling of a generation system including pumped storage hydro plants and wind power plants, where the uncertainty is represented by the hourly wind power production. In order to assess the value of the stochastic modeling, we discuss two case studies: in the former the scenario tree is built so as to include both low and high wind power production scenarios, in the latter the scenario tree is built on historical wind speed data covering a time span of one and a half year. The Value of the Stochastic Solution, computed by a modified new procedure, shows that in scenarios with low wind power production the stochastic solution allows the producer to obtain a profit which is greater than the one associated to the deterministic solution. In-sample stability of the optimal function values for increasing number of scenarios is reported.  相似文献   

16.
Models and algorithms for risk neutral and risk averse power optimization under uncertainty are presented. The approach differs from previous ones by incorporating the transmission network explicitly.  相似文献   

17.
18.
We study an insurance model where the risk can be controlled by reinsurance and investment in the financial market. We consider a finite planning horizon where the timing of the events, namely the arrivals of a claim and the change of the price of the underlying asset(s), corresponds to a Poisson point process. The objective is the maximization of the expected total utility and this leads to a nonstandard stochastic control problem with a possibly unbounded number of discrete random time points over the given finite planning horizon. Exploiting the contraction property of an appropriate dynamic programming operator, we obtain a value-iteration type algorithm to compute the optimal value and strategy and derive its speed of convergence. Following Schäl (2004) we consider also the specific case of exponential utility functions whereby negative values of the risk process are penalized, thus combining features of ruin minimization and utility maximization. For this case we are able to derive an explicit solution. Results of numerical computations are also reported.  相似文献   

19.
This paper considers several probability maximization models for multi-scenario portfolio selection problems in the case that future returns in possible scenarios are multi-dimensional random variables. In order to consider occurrence probabilities and decision makers’ predictions with respect to all scenarios, a portfolio selection problem setting a weight with flexibility to each scenario is proposed. Furthermore, by introducing aspiration levels to occurrence probabilities or future target profit and maximizing the minimum aspiration level, a robust portfolio selection problem is considered. Since these problems are formulated as stochastic programming problems due to the inclusion of random variables, they are transformed into deterministic equivalent problems introducing chance constraints based on the stochastic programming approach. Then, using a relation between the variance and absolute deviation of random variables, our proposed models are transformed into linear programming problems and efficient solution methods are developed to obtain the global optimal solution. Furthermore, a numerical example of a portfolio selection problem is provided to compare our proposed models with the basic model.  相似文献   

20.
In this paper we consider the adjustable robust approach to multistage optimization, for which we derive dynamic programming equations. We also discuss this from the point of view of risk averse stochastic programming. We consider as an example a robust formulation of the classical inventory model and show that, like for the risk neutral case, a basestock policy is optimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号