首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work is intended as a first step towards applying semidefinite programming models and tools to discrete lot-sizing problems including sequence-dependent changeover costs and times. Such problems can be formulated as quadratically constrained quadratic binary programs. We investigate several semidefinite relaxations by combining known reformulation techniques recently proposed for generic quadratic binary problems with problem-specific strengthening procedures developed for lot-sizing problems. Our computational results show that the semidefinite relaxations consistently provide lower bounds of significantly improved quality as compared with those provided by the best previously published linear relaxations. In particular, the gap between the semidefinite relaxation and the optimal integer solution value can be closed for a significant proportion of the small-size instances, thus avoiding to resort to a tree search procedure. The reported computation times are significant. However improvements in SDP technology can still be expected in the future, making SDP based approaches to discrete lot-sizing more competitive.  相似文献   

2.
We consider distributionally robust two-stage stochastic convex programming problems, in which the recourse problem is linear. Other than analyzing these new models case by case for different ambiguity sets, we adopt a unified form of ambiguity sets proposed by Wiesemann, Kuhn and Sim, and extend their analysis from a single stochastic constraint to the two-stage stochastic programming setting. It is shown that under a standard set of regularity conditions, this class of problems can be converted to a conic optimization problem. Numerical results are presented to show the efficiency of the distributionally robust approach.  相似文献   

3.
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve either second-order conic programming or linear programming relaxations of conic integer programs at the nodes of the branch-and-bound tree. Central to our approach is a reformulation of the second-order conic constraints with polyhedral second-order conic constraints in a higher dimensional space. In this representation the cuts we develop are linear, even though they are nonlinear in the original space of variables. This feature leads to a computationally efficient implementation of nonlinear cuts for conic mixed-integer programming. The reformulation also allows the use of polyhedral methods for conic integer programming. We report computational results on solving unstructured second-order conic mixed-integer problems as well as mean–variance capital budgeting problems and least-squares estimation problems with binary inputs. Our computational experiments show that conic mixed-integer rounding cuts are very effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs and, hence, improving their solvability. This research has been supported, in part, by Grant # DMI0700203 from the National Science Foundation.  相似文献   

4.
Discrete moment problems (DMP) with integer moments were first introduced by Prékopa to provide sharp lower and upper bounds for functions of discrete random variables. Prékopa also developed fast and stable dual type linear programming methods for the numerical solutions of the problem. In this paper, we assume that some fractional moments are also available and propose basic theory and a solution method for the bounding problems. Numerical experiments show significant improvement in the tightness of the bounds.  相似文献   

5.
 We consider stochastic programming problems with probabilistic constraints involving random variables with discrete distributions. They can be reformulated as large scale mixed integer programming problems with knapsack constraints. Using specific properties of stochastic programming problems and bounds on the probability of the union of events we develop new valid inequalities for these mixed integer programming problems. We also develop methods for lifting these inequalities. These procedures are used in a general iterative algorithm for solving probabilistically constrained problems. The results are illustrated with a numerical example. Received: October 8, 2000 / Accepted: August 13, 2002 Published online: September 27, 2002 Key words. stochastic programming – integer programming – valid inequalities  相似文献   

6.
We consider distributionally robust two-stage stochastic linear optimization problems with higher-order (say \(p\ge 3\) and even possibly irrational) moment constraints in their ambiguity sets. We suggest to solve the dual form of the problem by a semi-infinite programming approach, which deals with a much simpler reformulation than the conic optimization approach. Some preliminary numerical results are reported.  相似文献   

7.
We show that the complexity of computing the second order moment bound on the expected optimal value of a mixed integer linear program with a random objective coefficient vector is closely related to the complexity of characterizing the convex hull of the points \(\{{1 \atopwithdelims (){\varvec{x}}}{1 \atopwithdelims (){\varvec{x}}}' \ | \ {\varvec{x}} \in {\mathcal {X}}\}\) where \({\mathcal {X}}\) is the feasible region. In fact, we can replace the completely positive programming formulation for the moment bound on \({\mathcal {X}}\), with an associated semidefinite program, provided we have a linear or a semidefinite representation of this convex hull. As an application of the result, we identify a new polynomial time solvable semidefinite relaxation of the distributionally robust multi-item newsvendor problem by exploiting results from the Boolean quadric polytope. For \({\mathcal {X}}\) described explicitly by a finite set of points, our formulation leads to a reduction in the size of the semidefinite program. We illustrate the usefulness of the reduced semidefinite programming bounds in estimating the expected range of random variables with two applications arising in random walks and best–worst choice models.  相似文献   

8.
The simple integer recourse (SIR) function of a decision variable is the expectation of the integer round-up of the shortage/surplus between a random variable with a known distribution and the decision variable. It is the integer analogue of the simple (continuous) recourse function in two-stage stochastic linear programming. Structural properties and approximations of SIR functions have been extensively studied in the seminal works of van der Vlerk and coauthors. We study a distributionally robust SIR function (DR-SIR) that considers the worst-case expectation over a given family of distributions. Under the assumption that the distribution family is specified by its mean and support, we derive a closed form analytical expression for the DR-SIR function. We also show that this nonconvex DR-SIR function can be represented using a mixed-integer second-order conic program.  相似文献   

9.
Lifting is a procedure for deriving valid inequalities for mixed-integer sets from valid inequalities for suitable restrictions of those sets. Lifting has been shown to be very effective in developing strong valid inequalities for linear integer programming and it has been successfully used to solve such problems with branch-and-cut algorithms. Here we generalize the theory of lifting to conic integer programming, i.e., integer programs with conic constraints. We show how to derive conic valid inequalities for a conic integer program from conic inequalities valid for its lower-dimensional restrictions. In order to simplify the computations, we also discuss sequence-independent lifting for conic integer programs. When the cones are restricted to nonnegative orthants, conic lifting reduces to the lifting for linear integer programming as one may expect.  相似文献   

10.
In earlier proposals, the robust counterpart of conic optimization problems exhibits a lateral increase in complexity, i.e., robust linear programming problems (LPs) become second order cone problems (SOCPs), robust SOCPs become semidefinite programming problems (SDPs), and robust SDPs become NP-hard. We propose a relaxed robust counterpart for general conic optimization problems that (a) preserves the computational tractability of the nominal problem; specifically the robust conic optimization problem retains its original structure, i.e., robust LPs remain LPs, robust SOCPs remain SOCPs and robust SDPs remain SDPs, and (b) allows us to provide a guarantee on the probability that the robust solution is feasible when the uncertain coefficients obey independent and identically distributed normal distributions. The research of the author was partially supported by the Singapore-MIT alliance. The research of the author is supported by NUS academic research grant R-314-000-066-122 and the Singapore-MIT alliance.  相似文献   

11.
We introduce stochastic integer programs with second-order dominance constraints induced by mixed-integer linear recourse. Closedness of the constraint set mapping with respect to perturbations of the underlying probability measure is derived. For discrete probability measures, large-scale, block-structured, mixed- integer linear programming equivalents to the dominance constrained stochastic programs are identified. For these models, a decomposition algorithm is proposed and tested with instances from power optimization.  相似文献   

12.
This paper proposes two new mixed integer programming models for capacitated multi-level lot-sizing problems with backlogging, whose linear programming relaxations provide good lower bounds on the optimal solution value. We show that both of these strong formulations yield the same lower bounds. In addition to these theoretical results, we propose a new, effective optimization framework that achieves high quality solutions in reasonable computational time. Computational results show that the proposed optimization framework is superior to other well-known approaches on several important performance dimensions.  相似文献   

13.
A multiobjective binary integer programming model for R&D project portfolio selection with competing objectives is developed when problem coefficients in both objective functions and constraints are uncertain. Robust optimization is used in dealing with uncertainty while an interactive procedure is used in making tradeoffs among the multiple objectives. Robust nondominated solutions are generated by solving the linearized counterpart of the robust augmented weighted Tchebycheff programs. A decision maker’s most preferred solution is identified in the interactive robust weighted Tchebycheff procedure by progressively eliciting and incorporating the decision maker’s preference information into the solution process. An example is presented to illustrate the solution approach and performance. The developed approach can also be applied to general multiobjective mixed integer programming problems.  相似文献   

14.
一类分布鲁棒线性决策随机优化研究   总被引:1,自引:0,他引:1  
随机优化广泛应用于经济、管理、工程和国防等领域,分布鲁棒优化作为解决分布信息模糊下的随机优化问题近年来成为学术界的研究热点.本文基于φ-散度不确定集和线性决策方式研究一类分布鲁棒随机优化的建模与计算,构建了易于计算实现的分布鲁棒随机优化的上界和下界问题.数值算例验证了模型分析的有效性.  相似文献   

15.
We allocate surgery blocks to operating rooms (ORs) under random surgery durations. Given unknown distribution of the duration of each block, we investigate distributionally robust (DR) variants of two types of stochastic programming models using a moment-based ambiguous set. We minimize the total cost of opening ORs and allocating surgery blocks, while constraining OR overtime via chance constraints and via an expected penalty cost in the objective function, respectively in the two types of models. Following conic duality, we build equivalent 0–1 semidefinite programming (SDP) reformulations of the DR models and solve them using cutting-plane algorithms. For the DR chance-constrained model, we also derive a 0–1 second-order conic programming approximation to obtain less conservative solutions. We compare different models and solution methods by testing randomly generated instances. Our results show that the DR chance-constrained model better controls average and worst-case OR overtime, as compared to the stochastic programming and DR expected-penalty-based models. Our cutting-plane algorithms also outperform standard optimization solvers and efficiently solve 0–1 SDP formulations.  相似文献   

16.
This paper investigates a distributionally robust scheduling problem on identical parallel machines, where job processing times are stochastic without any exact distributional form. Based on a distributional set specified by the support and estimated moments information, we present a min-max distributionally robust model, which minimizes the worst-case expected total flow time out of all probability distributions in this set. Our model doesn’t require exact probability distributions which are the basis for many stochastic programming models, and utilizes more information compared to the interval-based robust optimization models. Although this problem originates from the manufacturing environment, it can be applied to many other fields when the machines and jobs are endowed with different meanings. By optimizing the inner maximization subproblem, the min-max formulation is reduced to an integer second-order cone program. We propose an exact algorithm to solve this problem via exploring all the solutions that satisfy the necessary optimality conditions. Computational experiments demonstrate the high efficiency of this algorithm since problem instances with 100 jobs are optimized in a few seconds. In addition, simulation results convincingly show that the proposed distributionally robust model can hedge against the bias of estimated moments and enhance the robustness of production systems.  相似文献   

17.
Many practical optimal control problems include discrete decisions. These may be either time-independent parameters or time-dependent control functions as gears or valves that can only take discrete values at any given time. While great progress has been achieved in the solution of optimization problems involving integer variables, in particular mixed-integer linear programs, as well as in continuous optimal control problems, the combination of the two is yet an open field of research. We consider the question of lower bounds that can be obtained by a relaxation of the integer requirements. For general nonlinear mixed-integer programs such lower bounds typically suffer from a huge integer gap. We convexify (with respect to binary controls) and relax the original problem and prove that the optimal solution of this continuous control problem yields the best lower bound for the nonlinear integer problem. Building on this theoretical result we present a novel algorithm to solve mixed-integer optimal control problems, with a focus on discrete-valued control functions. Our algorithm is based on the direct multiple shooting method, an adaptive refinement of the underlying control discretization grid and tailored heuristic integer methods. Its applicability is shown by a challenging application, the energy optimal control of a subway train with discrete gears and velocity limits.   相似文献   

18.
In this paper, we consider various moment inequalities for sums of random matrices—which are well-studied in the functional analysis and probability theory literature—and demonstrate how they can be used to obtain the best known performance guarantees for several problems in optimization. First, we show that the validity of a recent conjecture of Nemirovski is actually a direct consequence of the so-called non-commutative Khintchine’s inequality in functional analysis. Using this result, we show that an SDP-based algorithm of Nemirovski, which is developed for solving a class of quadratic optimization problems with orthogonality constraints, has a logarithmic approximation guarantee. This improves upon the polynomial approximation guarantee established earlier by Nemirovski. Furthermore, we obtain improved safe tractable approximations of a certain class of chance constrained linear matrix inequalities. Secondly, we consider a recent result of Delage and Ye on the so-called data-driven distributionally robust stochastic programming problem. One of the assumptions in the Delage–Ye result is that the underlying probability distribution has bounded support. However, using a suitable moment inequality, we show that the result in fact holds for a much larger class of probability distributions. Given the close connection between the behavior of sums of random matrices and the theoretical properties of various optimization problems, we expect that the moment inequalities discussed in this paper will find further applications in optimization.  相似文献   

19.
In this paper, we consider the box constrained nonlinear integer programming problem. We present an auxiliary function, which has the same discrete global minimizers as the problem. The minimization of the function using a discrete local search method can escape successfully from previously converged discrete local minimizers by taking increasing values of a parameter. We propose an algorithm to find a global minimizer of the box constrained nonlinear integer programming problem. The algorithm minimizes the auxiliary function from random initial points. We prove that the algorithm can converge asymptotically with probability one. Numerical experiments on a set of test problems show that the algorithm is efficient and robust.  相似文献   

20.
We consider in this paper the non-linear integer programming problem with varying right hand side and objective function coefficients. We establish what additional information to keep in the implicit enumeration tree, when solving the original problem, in order to provide us with bounds on the optimal value of a perturbed problem. The results obtained are extensions of the results given by Schrage and Wolsey [10] for linear integer programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号