首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a real coded genetic algorithm named MI-LXPM is proposed for solving integer and mixed integer constrained optimization problems. The proposed algorithm is a suitably modified and extended version of the real coded genetic algorithm, LXPM, of Deep and Thakur [K. Deep, M. Thakur, A new crossover operator for real coded genetic algorithms, Applied Mathematics and Computation 188 (2007) 895-912; K. Deep, M. Thakur, A new mutation operator for real coded genetic algorithms, Applied Mathematics and Computation 193 (2007) 211-230]. The algorithm incorporates a special truncation procedure to handle integer restrictions on decision variables along with a parameter free penalty approach for handling constraints. Performance of the algorithm is tested on a set of twenty test problems selected from different sources in literature, and compared with the performance of an earlier application of genetic algorithm and also with random search based algorithm, RST2ANU, incorporating annealing concept. The proposed MI-LXPM outperforms both the algorithms in most of the cases which are considered.  相似文献   

2.
In this paper we consider the problem of locating one new facility with respect to a given set of existing facilities in the plane and in the presence of convex polyhedral barriers. It is assumed that a barrier is a region where neither facility location nor travelling are permitted. The resulting non-convex optimization problem can be reduced to a finite series of convex subproblems, which can be solved by the Weiszfeld algorithm in case of the Weber objective function and Euclidean distances. A solution method is presented that, by iteratively executing a genetic algorithm for the selection of subproblems, quickly finds a solution of the global problem. Visibility arguments are used to reduce the number of subproblems that need to be considered, and numerical examples are presented.  相似文献   

3.
We show that the production-transportation problem involving an arbitrary fixed number of factories with concave production cost is solvable in strongly polynomial time. The algorithm is based on a parametric approach which takes full advantage of the specific structure of the problem: monotonicity of the objective function along certain directions, small proportion of nonlinear variables and combinatorial properties implied by transportation constraints.  相似文献   

4.
Mixed-integer nonlinear programming (MINLP) problems involving general constraints and objective functions with continuous and integer variables occur frequently in engineering design, chemical process industry and management. Although many optimization approaches have been developed for MINLP problems, these methods can only handle signomial terms with positive variables or find a local solution. Therefore, this study proposes a novel method for solving a signomial MINLP problem with free variables to obtain a global optimal solution. The signomial MINLP problem is first transformed into another one containing only positive variables. Then the transformed problem is reformulated as a convex mixed-integer program by the convexification strategies and piecewise linearization techniques. A global optimum of the signomial MINLP problem can finally be found within the tolerable error. Numerical examples are also presented to demonstrate the effectiveness of the proposed method.  相似文献   

5.
In this paper, a discrete filled function algorithm embedded with continuous approximation is proposed to solve max-cut problems. A new discrete filled function is defined for max-cut problems, and properties of the function are studied. In the process of finding an approximation to the global solution of a max-cut problem, a continuation optimization algorithm is employed to find local solutions of a continuous relaxation of the max-cut problem, and then global searches are performed by minimizing the proposed filled function. Unlike general filled function methods, characteristics of max-cut problems are used. The parameters in the proposed filled function need not to be adjusted and are exactly the same for all max-cut problems that greatly increases the efficiency of the filled function method. Numerical results and comparisons on some well known max-cut test problems show that the proposed algorithm is efficient to get approximate global solutions of max-cut problems.  相似文献   

6.
A method is presented for attempting global minimization for a function of continuous variables subject to constraints. The method, calledAdaptive Simulated Annealing (ASA), is distinguished by the fact that the fixed temperature schedules and step generation routines that characterize other implementations are here replaced by heuristic-based methods that effectively eliminate the dependence of the algorithm's overall performance on user-specified control parameters. A parallelprocessing version of ASA that gives increased efficiency is presented and applied to two standard problems for illustration and comparison.This research was supported by the University Research Initiative of the U.S. Army Research Office.  相似文献   

7.
This paper introduces a new algorithm for solving mixed integer programs. The core of the method is an iterative technique for changing the representation of the original mixed integer optimization problem. Supported by grants FKZ 0037KD0099 and FKZ 2495A/0028G of the Kultusministerium of Sachsen-Anhalt.Supported by a Gerhard-Hess-Preis and grant WE 1462 of the Deutsche Forschungsgemeinschaft, and by the European DONET program TMR ERB FMRX-CT98-0202.Mathematics Subject Classification (1991):90C11  相似文献   

8.
9.
《Optimization》2012,61(5):619-625
Convexity and generalized convexity play a central role in mathematical economics and optimization theory. So, the research on criteria for convexity or generalized convexity is one of the most important aspects in mathematical programming, in order to characterize the solutions set. Many efforts have been made in the few last years to weaken the convexity notions. In this article, taking in mind Craven's notion of K-invexity function (when K is a cone in ? n ) and Martin's notion of Karush–Kuhn–Tucker invexity (hereafter KKT-invexity), we define a new notion of generalized convexity that is both necessary and sufficient to ensure every KKT point is a global optimum for programming problems with conic constraints. This new definition is a generalization of KKT-invexity concept given by Martin and K-invexity function given by Craven. Moreover, it is the weakest to characterize the set of optimal solutions. The notions and results that exist in the literature up to now are particular instances of the ones presented here.  相似文献   

10.
Engineering optimization problems are multicriteria with continuous, discrete, and mixed design variables. Correct definition of the feasible solution set is of fundamental importance in these problems. It is quite difficult for the expert to define this set. For this reason, the results of searching for optimal solutions frequently have no practical meaning. Furthermore, correct definition of this set makes it possible to significantly reduce the time of searching for optimal solutions. This paper describes construction of the feasible solution set with continuous, discrete, and mixed design variables on the basis of Parameter Space Investigation (PSI) method.  相似文献   

11.
12.
This paper presents a kind of dynamic genetic algorithm based on a continuous neural network, which is intrinsically the steepest decent method for constrained optimization problems. The proposed algorithm combines the local searching ability of the steepest decent methods with the global searching ability of genetic algorithms. Genetic algorithms are used to decide each initial point of the steepest decent methods so that all the initial points can be searched intelligently. The steepest decent methods are employed to decide the fitness of genetic algorithms so that some good initial points can be selected. The proposed algorithm is motivated theoretically and biologically. It can be used to solve a non-convex optimization problem which is quadratic and even more non-linear. Compared with standard genetic algorithms, it can improve the precision of the solution while decreasing the searching scale. In contrast to the ordinary steepest decent method, it can obtain global sub-optimal solution while lessening the complexity of calculation.  相似文献   

13.
This two part paper considers the classical problem of finding a truss design with minimal compliance subject to a given external force and a volume bound. The design variables describe the cross-section areas of the bars. While this problem is well-studied for continuous bar areas, we treat here the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single bar area, i.e., a 0/1-problem. In contrast to heuristic methods considered in other approaches, Part I of the paper together with Part II present an algorithmic framework for the calculation of a global optimizer of the underlying large-scaled mixed integer design problem. This framework is given by a convergent branch-and-bound algorithm which is based on solving a sequence of nonconvex continuous relaxations. The main issue of the paper and of the approach lies in the fact that the relaxed nonlinear optimization problem can be formulated as a quadratic program (QP). Here the paper generalizes and extends the available theory from the literature. Although the Hessian of this QP is indefinite, it is possible to circumvent the non-convexity and to calculate global optimizers. Moreover, the QPs to be treated in the branch-and-bound search tree differ from each other just in the objective function. In Part I we give an introduction to the problem and collect all theory and related proofs for the treatment of the original problem formulation and the continuous relaxed problems. The implementation details and convergence proof of the branch-and-bound methodology and the large-scale numerical examples are presented in Part II.  相似文献   

14.
A D.C. optimization method for single facility location problems   总被引:4,自引:0,他引:4  
The single facility location problem with general attraction and repulsion functions is considered. An algorithm based on a representation of the objective function as the difference of two convex (d.c.) functions is proposed. Convergence to a global solution of the problem is proven and extensive computational experience with an implementation of the procedure is reported for up to 100,000 points. The procedure is also extended to solve conditional and limited distance location problems. We report on limited computational experiments on these extensions.This research was supported in part by the National Science Foundation Grant DDM-91-14489.  相似文献   

15.
A branch and bound method for stochastic global optimization   总被引:9,自引:0,他引:9  
A stochastic branch and bound method for solving stochastic global optimization problems is proposed. As in the deterministic case, the feasible set is partitioned into compact subsets. To guide the partitioning process the method uses stochastic upper and lower estimates of the optimal value of the objective function in each subset. Convergence of the method is proved and random accuracy estimates derived. Methods for constructing stochastic upper and lower bounds are discussed. The theoretical considerations are illustrated with an example of a facility location problem.  相似文献   

16.
Greedy algorithms for combinatorial optimization problems are typically direct and efficient, but hard to prove optimality. The paper presents a special class of transportation problems where a supplier sends goods to a set of customers, returning to the source after each delivery. We show that these problems with different objective functions share a common structural property, and therefore a simple but powerful generic greedy algorithm yields optimal solutions for all of them.  相似文献   

17.
In the graph partitioning problem, as in other NP-hard problems, the problem of proving the existence of a cut of given size is easy and can be accomplished by exhibiting a solution with the correct value. On the other hand proving the non-existence of a cut better than a given value is very difficult. We consider the problem of maximizing a quadratic function x T Q x where Q is an n × n real symmetric matrix with x an n-dimensional vector constrained to be an element of {–1, 1} n . We had proposed a technique for obtaining upper bounds on solutions to the problem using a continuous approach in [4]. In this paper, we extend this method by using techniques of differential geometry.  相似文献   

18.
This paper presents a new relaxation technique to globally optimize mixed-integer polynomial programming problems that arise in many engineering and management contexts. Using a bilinear term as the basic building block, the underlying idea involves the discretization of one of the variables up to a chosen accuracy level (Teles, J.P., Castro, P.M., Matos, H.A. (2013). Multiparametric disaggregation technique for global optimization of polynomial programming problems. J. Glob. Optim. 55, 227–251), by means of a radix-based numeric representation system, coupled with a residual variable to effectively make its domain continuous. Binary variables are added to the formulation to choose the appropriate digit for each position together with new sets of continuous variables and constraints leading to the transformation of the original mixed-integer non-linear problem into a larger one of the mixed-integer linear programming type. The new underestimation approach can be made as tight as desired and is shown capable of providing considerably better lower bounds than a widely used global optimization solver for a specific class of design problems involving bilinear terms.  相似文献   

19.
The goal of this work is the development of a black-box solver based on the scatter search methodology. In particular, we seek a solver capable of obtaining high quality outcomes to optimization problems for which solutions are represented as a vector of integer values. We refer to these problems as integer optimization problems. We assume that the decision variables are bounded and that there may be constraints that require that the black-box evaluator is called in order to know whether they are satisfied. Problems of this type are common in operational research areas of applications such as telecommunications, project management, engineering design and the like.Our experimental testing includes 171 instances within four classes of problems taken from the literature. The experiments compare the performance of the proposed method with both the best context-specific procedures designed for each class of problem as well as context-independent commercial software. The experiments show that the proposed solution method competes well against commercial software and that can be competitive with specialized procedures in some problem classes.  相似文献   

20.
In this paper, a new local optimization method for mixed integer quadratic programming problems with box constraints is presented by using its necessary global optimality conditions. Then a new global optimization method by combining its sufficient global optimality conditions and an auxiliary function is proposed. Some numerical examples are also presented to show that the proposed optimization methods for mixed integer quadratic programming problems with box constraints are very efficient and stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号