首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
In this paper we introduce DRL*, a new hierarchy of linear relaxations for 0-1 mixed integer linear programs (MIPs), based on the idea of Reformulation-Linearization, and explore its links with the Lift-and-Project (L&P) hierarchy and the Sherali-Adams (RLT) hierarchy. The relaxations of the new hierarchy are shown to be intermediate in strength between L&P and RLT relaxations, and examples are shown for which it leads to significantly stronger bounds than those obtained from Lift-and-Project relaxations. On the other hand, as opposed to the RLT relaxations, a key advantage of the DRL* relaxations is that they feature a decomposable structure when formulated in extended space, therefore lending themselves to more efficient solution algorithms by properly exploiting decomposition. Links between DRL* and both the L&P and RLT hierarchies are further explored, and those constraints which should be added to the rank d L&P relaxation (resp to the rank d RLT relaxation) to make it coincide with the rank d DRL* relaxation (resp: to the rank d RLT relaxation) are identified. Furthermore, a full characterization of those 0-1 MIPs for which the DRL* and RLT relaxations coincide is obtained. As an application, we show that both the RLT and DRL* relaxations are the same up to rank d for the problem of optimizing a pseudoboolean function of degree d over a polyhedron. We report computational results comparing the strengths of the rank 2 L&P, DRL* and RLT relaxations. Impact on possible improved efficiency in computing some bounds for the quadratic assignment problem and other directions for future research are suggested in the conclusions.  相似文献   

2.
We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems we show that the use of SDP and RLT constraints together can produce bounds that are substantially better than either technique used alone. For highly symmetric problems we also consider the effect of symmetry-breaking based on tightened bounds on variables and/or order constraints.  相似文献   

3.
This paper studies the global optimization of polynomial programming problems using Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations. We introduce a new class of bound-grid-factor constraints that can be judiciously used to augment the basic RLT relaxations in order to improve the quality of lower bounds and enhance the performance of global branch-and-bound algorithms. Certain theoretical properties are established that shed light on the effect of these valid inequalities in driving the discrepancies between RLT variables and their associated nonlinear products to zero. To preserve computational expediency while promoting efficiency, we propose certain concurrent and sequential cut generation routines and various grid-factor selection rules. The results indicate a significant tightening of lower bounds, which yields an overall reduction in computational effort for solving a test-bed of polynomial programming problems to global optimality in comparison with the basic RLT procedure as well as the commercial software BARON.  相似文献   

4.
This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex quadratic programmings. Results show that one may compute a bound of the radius of the feasible space by a linear programming which is known to be a PP-problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373–395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377–399] for solving a standard quadratic programming problem.  相似文献   

5.
New variants of greedy algorithms, called advanced greedy algorithms, are identified for knapsack and covering problems with linear and quadratic objective functions. Beginning with single-constraint problems, we provide extensions for multiple knapsack and covering problems, in which objects must be allocated to different knapsacks and covers, and also for multi-constraint (multi-dimensional) knapsack and covering problems, in which the constraints are exploited by means of surrogate constraint strategies. In addition, we provide a new graduated-probe strategy for improving the selection of variables to be assigned values. Going beyond the greedy and advanced greedy frameworks, we describe ways to utilize these algorithms with multi-start and strategic oscillation metaheuristics. Finally, we identify how surrogate constraints can be utilized to produce inequalities that dominate those previously proposed and tested utilizing linear programming methods for solving multi-constraint knapsack problems, which are responsible for the current best methods for these problems. While we focus on 0–1 problems, our approaches can readily be adapted to handle variables with general upper bounds.  相似文献   

6.
In this paper, we propose to enhance Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations for polynomial programming problems by developing cutting plane strategies using concepts derived from semidefinite programming. Given an RLT relaxation, we impose positive semidefiniteness on suitable dyadic variable-product matrices, and correspondingly derive implied semidefinite cuts. In the case of polynomial programs, there are several possible variants for selecting such particular variable-product matrices on which positive semidefiniteness restrictions can be imposed in order to derive implied valid inequalities. This leads to a new class of cutting planes that we call v-semidefinite cuts. We explore various strategies for generating such cuts, and exhibit their relative effectiveness towards tightening the RLT relaxations and solving the underlying polynomial programming problems in conjunction with an RLT-based branch-and-cut scheme, using a test-bed of problems from the literature as well as randomly generated instances. Our results demonstrate that these cutting planes achieve a significant tightening of the lower bound in contrast with using RLT as a stand-alone approach, thereby enabling a more robust algorithm with an appreciable reduction in the overall computational effort, even in comparison with the commercial software BARON and the polynomial programming problem solver GloptiPoly.  相似文献   

7.
We consider linear mixed-integer programs where a subset of the variables are restricted to take on a finite number of general discrete values. For this class of problems, we develop a reformulation-linearization technique (RLT) to generate a hierarchy of linear programming relaxations that spans the spectrum from the continuous relaxation to the convex hull representation. This process involves a reformulation phase in which suitable products using a defined set of Lagrange interpolating polynomials (LIPs) are constructed, accompanied by the application of an identity that generalizes x(1−x) for the special case of a binary variable x. This is followed by a linearization phase that is based on variable substitutions. The constructs and arguments are distinct from those for the mixed 0-1 RLT, yet they encompass these earlier results. We illustrate the approach through some examples, emphasizing the polyhedral structure afforded by the linearized LIPs. We also consider polynomial mixed-integer programs, exploitation of structure, and conditional-logic enhancements, and provide insight into relationships with a special-structure RLT implementation.  相似文献   

8.
Several hybrid methods have recently been proposed for solving 0–1 mixed integer programming problems. Some of these methods are based on the complete exploration of small neighborhoods. In this paper, we present several convergent algorithms that solve a series of small sub-problems generated by exploiting information obtained from a series of relaxations. These algorithms generate a sequence of upper bounds and a sequence of lower bounds around the optimal value. First, the principle of a linear programming-based algorithm is summarized, and several enhancements of this algorithm are presented. Next, new hybrid heuristics that use linear programming and/or mixed integer programming relaxations are proposed. The mixed integer programming (MIP) relaxation diversifies the search process and introduces new constraints in the problem. This MIP relaxation also helps to reduce the gap between the final upper bound and lower bound. Our algorithms improved 14 best-known solutions from a set of 108 available and correlated instances of the 0–1 multidimensional Knapsack problem. Other encouraging results obtained for 0–1 MIP problems are also presented.  相似文献   

9.
We consider an inverse problem arising from the semi-definite quadratic programming (SDQP) problem. We represent this problem as a cone-constrained minimization problem and its dual (denoted ISDQD) is a semismoothly differentiable (SC1SC1) convex programming problem with fewer variables than the original one. The Karush–Kuhn–Tucker conditions of the dual problem (ISDQD) can be formulated as a system of semismooth equations which involves the projection onto the cone of positive semi-definite matrices. A smoothing Newton method is given for getting a Karush–Kuhn–Tucker point of ISDQD. The proposed method needs to compute the directional derivative of the smoothing projector at the corresponding point and to solve one linear system per iteration. The quadratic convergence of the smoothing Newton method is proved under a suitable condition. Numerical experiments are reported to show that the smoothing Newton method is very effective for solving this type of inverse quadratic programming problems.  相似文献   

10.
This paper explores equivalent, reduced size Reformulation-Linearization Technique (RLT)-based formulations for polynomial programming problems. Utilizing a basis partitioning scheme for an embedded linear equality subsystem, we show that a strict subset of RLT defining equalities imply the remaining ones. Applying this result, we derive significantly reduced RLT representations and develop certain coherent associated branching rules that assure convergence to a global optimum, along with static as well as dynamic basis selection strategies to implement the proposed procedure. In addition, we enhance the RLT relaxations with v-semidefinite cuts, which are empirically shown to further improve the relative performance of the reduced RLT method over the usual RLT approach. We present computational results for randomly generated instances to test the different proposed reduction strategies and to demonstrate the improvement in overall computational effort when such reduced RLT mechanisms are employed.  相似文献   

11.
In this paper, we propose a mechanism to tighten Reformulation-Linearization Technique (RLT) based relaxations for solving nonconvex programming problems by importing concepts from semidefinite programming (SDP), leading to a new class of semidefinite cutting planes. Given an RLT relaxation, the usual nonnegativity restrictions on the matrix of RLT product variables is replaced by a suitable positive semidefinite constraint. Instead of relying on specific SDP solvers, the positive semidefinite stipulation is re-written to develop a semi-infinite linear programming representation of the problem, and an approach is developed that can be implemented using traditional optimization software. Specifically, the infinite set of constraints is relaxed, and members of this set are generated as needed via a separation routine in polynomial time. In essence, this process yields an RLT relaxation that is augmented with valid inequalities, which are themselves classes of RLT constraints that we call semidefinite cuts. These semidefinite cuts comprise a relaxation of the underlying semidefinite constraint. We illustrate this strategy by applying it to the case of optimizing a nonconvex quadratic objective function over a simplex. The algorithm has been implemented in C++, using CPLEX callable routines, and two types of semidefinite restrictions are explored along with several implementation strategies. Several of the most promising lower bounding strategies have been implemented within a branch-and-bound framework. Computational results indicate that the cutting plane algorithm provides a significant tightening of the lower bound obtained by using RLT alone. Moreover, when used within a branch-and-bound framework, the proposed lower bound significantly reduces the effort required to obtain globally optimal solutions.  相似文献   

12.
The symmetric quadratic knapsack problem (SQKP), which has several applications in machine scheduling, is NP-hard. An approximation scheme for this problem is known to achieve an approximation ratio of (1 + ?) for any ? > 0. To ensure a polynomial time complexity, this approximation scheme needs an input of a lower bound and an upper bound on the optimal objective value, and requires the ratio of the bounds to be bounded by a polynomial in the size of the problem instance. However, such bounds are not mentioned in any previous literature. In this paper, we present the first such bounds and develop a polynomial time algorithm to compute them. The bounds are applied, so that we have obtained for problem (SQKP) a fully polynomial time approximation scheme (FPTAS) that is also strongly polynomial time, in the sense that the running time is bounded by a polynomial only in the number of integers in the problem instance.  相似文献   

13.
In this paper, we consider a DC infinite programming problem (P) with inequality constraints. By using the properties of the epigraph of the conjugate functions, we introduce some new notions of regularity conditions for (P). Under these new regularity conditions, we completely characterize the Fenchel–Lagrange duality and the stable Fenchel–Lagrange duality for (P). Similarly, we also completely characterize the Farkas-type results and the stable Farkas-type results for (P). As applications, we obtain the corresponding results for conic programming problems.  相似文献   

14.
The Golomb Ruler problem consists in finding n integers such that all possible differences are distinct and such that the largest difference is minimum. We review three lower bounds based on linear programming that have been proposed in the literature for this problem, and propose a new one. We then show that these 4 lower bounds are equal. Finally we discuss some computational experience aiming at identifying the easiest lower bound to compute in practice.  相似文献   

15.
This paper reports on a new algorithm for the Generalized Quadratic Assignment problem (GQAP). The GQAP describes a broad class of quadratic integer programming problems, wherein M pair-wise related entities are assigned to N destinations constrained by the destinations’ ability to accommodate them. This new algorithm is based on a Reformulation Linearization Technique (RLT) dual ascent procedure. Experimental results show that the runtime of this algorithm is as good or better than other known exact solution methods for problems as large as M=20 and N=15. Current address of P.M. Hahn: 2127 Tryon Street, Philadelphia, PA 19146-1228, USA.  相似文献   

16.
In this paper, we consider the linear complementarity problem (LCP) and present a global optimization algorithm based on an application of the reformulation-linearization technique (RLT). The matrix M associated with the LCP is not assumed to possess any special structure. In this approach, the LCP is formulated first as a mixed-integer 0–1 bilinear programming problem. The RLT scheme is then used to derive a new equivalent mixed-integer linear programming formulation of the LCP. An implicit enumeration scheme is developed that uses Lagrangian relaxation, strongest surrogate and strengthened cutting planes, and a heuristic, designed to exploit the strength of the resulting linearization. Computational experience on various test problems is presented.  相似文献   

17.
We present active set methods to evaluate the exact analytic efficient solution set for multi-criteria convex quadratic programming problems (MCQP) subject to linear constraints. The idea is based on the observations that a strictly convex programming problem admits a unique solution, and that the efficient solution set for a multi-criteria strictly convex quadratic programming problem with linear equality constraints can be parameterized. The case of bi-criteria quadratic programming (BCQP) is first discussed since many of the underlying ideas can be explained much more clearly in the case of two objectives. In particular we note that the efficient solution set of a BCQP problem is a curve on the surface of a polytope. The extension to problems with more than two objectives is straightforward albeit some slightly more complicated notation. Two numerical examples are given to illustrate the proposed methods.  相似文献   

18.
We study the integrality gap of the natural linear programming relaxation for the Bounded Color Matching (BCM) problem. We provide several families of instances and establish lower bounds on their integrality gaps and we study how the Sherali–Adams “lift-and-project” technique behaves on these instances. We complement these results by showing that if we exclude certain simple sub-structures from our input graphs, then the integrality gap of the natural linear formulation strictly improves. To prove this, we adapt for our purposes the results of Füredi (1981). We further leverage this to show upper bounds on the performance of the Sherali–Adams hierarchy when applied to the natural LP relaxation of the BCM problem.  相似文献   

19.
The maximum stable set problem is a well-known NP-hard problem in combinatorial optimization, which can be formulated as the maximization of a quadratic square-free polynomial over the (Boolean) hypercube. We investigate a hierarchy of linear programming relaxations for this problem, based on a result of Handelman showing that a positive polynomial over a polytope with non-empty interior can be represented as conic combination of products of the linear constraints defining the polytope. We relate the rank of Handelman’s hierarchy with structural properties of graphs. In particular we show a relation to fractional clique covers which we use to upper bound the Handelman rank for perfect graphs and determine its exact value in the vertex-transitive case. Moreover we show two upper bounds on the Handelman rank in terms of the (fractional) stability number of the graph and compute the Handelman rank for several classes of graphs including odd cycles and wheels and their complements. We also point out links to several other linear and semidefinite programming hierarchies.  相似文献   

20.
In this paper, we consider the following minimax linear programming problem: min z = max1 ≤ jn{CjXj}, subject to Ax = g, x ≥ 0. It is well known that this problem can be transformed into a linear program by introducing n additional constraints. We note that these additional constraints can be considered implicitly by treating them as parametric upper bounds. Based on this approach we develop two algorithms: a parametric algorithm and a primal—dual algorithm. The parametric algorithm solves a linear programming problem with parametric upper bounds and the primal—dual algorithm solves a sequence of related dual feasible linear programming problems. Computation results are also presented, which indicate that both the algorithms are substantially faster than the simplex algorithm applied to the enlarged linear programming problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号