首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In robust optimization, the general aim is to find a solution that performs well over a set of possible parameter outcomes, the so-called uncertainty set. In this paper, we assume that the uncertainty size is not fixed, and instead aim at finding a set of robust solutions that covers all possible uncertainty set outcomes. We refer to these problems as robust optimization with variable-sized uncertainty. We discuss how to construct smallest possible sets of min–max robust solutions and give bounds on their size.A special case of this perspective is to analyze for which uncertainty sets a nominal solution ceases to be a robust solution, which amounts to an inverse robust optimization problem. We consider this problem with a min–max regret objective and present mixed-integer linear programming formulations that can be applied to construct suitable uncertainty sets.Results on both variable-sized uncertainty and inverse problems are further supported with experimental data.  相似文献   

2.
This work discusses robustness assessment during multi-objective optimization with a Multi-Objective Evolutionary Algorithm (MOEA) using a combination of two types of robustness measures. Expectation quantifies simultaneously fitness and robustness, while variance assesses the deviation of the original fitness in the neighborhood of the solution. Possible equations for each type are assessed via application to several benchmark problems and the selection of the most adequate is carried out. Diverse combinations of expectation and variance measures are then linked to a specific MOEA proposed by the authors, their selection being done on the basis of the results produced for various multi-objective benchmark problems. Finally, the combination preferred plus the same MOEA are used successfully to obtain the fittest and most robust Pareto optimal frontiers for a few more complex multi-criteria optimization problems.  相似文献   

3.
Real optimization problems often involve not one, but multiple objectives, usually in conflict. In single-objective optimization there exists a global optimum, while in the multi-objective case no optimal solution is clearly defined but rather a set of optimums, which constitute the so called Pareto-optimal front. Thus, the goal of multi-objective strategies is to generate a set of non-dominated solutions as an approximation to this front. However, most problems of this kind cannot be solved exactly because they have very large and highly complex search spaces. The objective of this work is to compare the performance of a new hybrid method here proposed, with several well-known multi-objective evolutionary algorithms (MOEA). The main attraction of these methods is the integration of selection and diversity maintenance. Since it is very difficult to describe exactly what a good approximation is in terms of a number of criteria, the performance is quantified with adequate metrics that evaluate the proximity to the global Pareto-front. In addition, this work is also one of the few empirical studies that solves three-objective optimization problems using the concept of global Pareto-optimality.  相似文献   

4.
Inverse multi-objective combinatorial optimization consists of finding a minimal adjustment of the objective functions coefficients such that a given set of feasible solutions becomes efficient. An algorithm is proposed for rendering a given feasible solution into an efficient one. This is a simplified version of the inverse problem when the cardinality of the set is equal to one. The adjustment is measured by the Chebyshev distance. It is shown how to build an optimal adjustment in linear time based on this distance, and why it is right to perform a binary search for determining the optimal distance. These results led us to develop an approach based on the resolution of mixed-integer linear programs. A second approach based on a branch-and-bound is proposed to handle any distance function that can be linearized. Finally, the initial inverse problem is solved by a cutting plane algorithm.  相似文献   

5.
Robust optimization is a tractable alternative to stochastic programming particularly suited for problems in which parameter values are unknown, variable and their distributions are uncertain. We evaluate the cost of robustness for the robust counterpart to the maximum return portfolio optimization problem. The uncertainty of asset returns is modelled by polyhedral uncertainty sets as opposed to the earlier proposed ellipsoidal sets. We derive the robust model from a min-regret perspective and examine the properties of robust models with respect to portfolio composition. We investigate the effect of different definitions of the bounds on the uncertainty sets and show that robust models yield well diversified portfolios, in terms of the number of assets and asset weights.  相似文献   

6.
Robust improvement schemes for road networks under demand uncertainty   总被引:2,自引:0,他引:2  
This paper is concerned with development of improvement schemes for road networks under future travel demand uncertainty. Three optimization models, sensitivity-based, scenario-based and min–max, are proposed for determining robust optimal improvement schemes that make system performance insensitive to realizations of uncertain demands or allow the system to perform better against the worst-case demand scenario. Numerical examples and simulation tests are presented to demonstrate and validate the proposed models.  相似文献   

7.
We are interested in a problem introduced by Vassilvitskii and Yannakakis (2005), the computation of a minimum set of solutions that approximates within an accuracy εε the Pareto set of a multi-objective optimization problem. We mainly establish a new 3-approximation algorithm for the bi-objective case. We also propose a study of the greedy algorithm performance for the tri-objective case when the points are given explicitly, answering an open question raised by Koltun and Papadimitriou in (2007).  相似文献   

8.
In this paper, we present a simulated annealing algorithm for solving multi-objective simulation optimization problems. The algorithm is based on the idea of simulated annealing with constant temperature, and uses a rule for accepting a candidate solution that depends on the individual estimated objective function values. The algorithm is shown to converge almost surely to an optimal solution. It is applied to a multi-objective inventory problem; the numerical results show that the algorithm converges rapidly.  相似文献   

9.
We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem.  相似文献   

10.
Several decision-making techniques involve pairwise comparisons to elicit the preferences of a decision maker (DM). This paper proposes a new approach for prioritization from pairwise comparisons using the concept of indirect judgments. No method exists that simultaneously minimizes deviations from both direct and indirect judgments. In order to estimate preferences, it is sensible to consider both the acquired judgments and the other judgments latent in the DM’s mind. Hence, a technique is developed here to minimize the deviations from both types of judgments.  相似文献   

11.
Pareto dominance is one of the most basic concepts in multi-objective optimization. However, it is inefficient when the number of objectives is large because in this case it leads to an unmanageable number of Pareto solutions. In order to solve this problem, a new concept of logic dominance is defined by considering the number of improved objectives and the quantity of improvement simultaneously, where probabilistic logic is applied to measure the quantity of improvement. Based on logic dominance, the corresponding logic nondominated solution is defined as a feasible solution which is not dominated by other ones based on this new relationship, and it is proved that each logic nondominated solution is also a Pareto solution. Essentially, logic dominance is an extension of Pareto dominance. Since there are already several extensions for Pareto dominance, some comparisons are given in terms of numerical examples, which indicates that logic dominance is more efficient. As an application of logic dominance, a house choice problem with five objectives is considered.  相似文献   

12.
The robust optimization methodology is known as a popular method dealing with optimization problems with uncertain data and hard constraints. This methodology has been applied so far to various convex conic optimization problems where only their inequality constraints are subject to uncertainty. In this paper, the robust optimization methodology is applied to the general nonlinear programming (NLP) problem involving both uncertain inequality and equality constraints. The uncertainty set is defined by conic representable sets, the proposed uncertainty set is general enough to include many uncertainty sets, which have been used in literature, as special cases. The robust counterpart (RC) of the general NLP problem is approximated under this uncertainty set. It is shown that the resulting approximate RC of the general NLP problem is valid in a small neighborhood of the nominal value. Furthermore a rather general class of programming problems is posed that the robust counterparts of its problems can be derived exactly under the proposed uncertainty set. Our results show the applicability of robust optimization to a wider area of real applications and theoretical problems with more general uncertainty sets than those considered so far. The resulting robust counterparts which are traditional optimization problems make it possible to use existing algorithms of mathematical optimization to solve more complicated and general robust optimization problems.  相似文献   

13.
Spatial planning is an important and complex activity. It includes land use planning and resource allocation as basic components. An abundance of papers can be found in the literature related to each one of these two aspects separately. On the contrary, a much smaller number of research reports deal with both aspects simultaneously. This paper presents an innovative evolutionary algorithm for treating combined land use planning and resource allocation problems. The new algorithm performs optimization on a cellular automaton domain, applying suitable transition rules on the individual neighbourhoods. The optimization process is multi-objective, based on non-domination criteria and self-organizing. It produces a Pareto front thus offering an advantage to the decision maker, in comparison to methods based on weighted-sum objective functions. Moreover, the present multi-objective self-organizing algorithm (MOSOA) can handle both local and global spatial constraints. A combined land use and water allocation problem is treated, in order to illustrate the cellular automaton optimization approach. Water is allocated after pumping from an aquifer, thus contributing a nonlinearity to the objective function. The problem is bi-objective aiming at (a) the minimization of soil and groundwater pollution and (b) the maximization of economic profit. An ecological and a socioeconomic constraint are imposed: (a) Groundwater levels at selected places are kept above prescribed thresholds. (b) Land use quota is predefined. MOSOA is compared to a standard multi-objective genetic algorithm and is shown to yield better results both with respect to the Pareto front and to the degree of compactness. The latter is a highly desirable feature of a land use pattern. In the land use literature, compactness is part of the objective function or of the constraints. In contrast, the present approach renders compactness as an emergent result.  相似文献   

14.
We estimate the increase in minimum value for a decision that is robust to parameter perturbations as compared to the value of a nominal nonconvex problem. The estimates rely on expressions for subgradients and local Lipschitz moduli of min-value functions and require only the solution of the nominal problem. Across 54 mixed-integer optimization models, the median error in estimating the increase in minimum value is 12%. The results inform analysts about the possibility of obtaining cost-effective, parameter-robust decisions.  相似文献   

15.
In this paper we propose an exact method able to solve multi-objective combinatorial optimization problems. This method is an extension, for any number of objectives, of the 2-Parallel Partitioning Method (2-PPM) we previously proposed. Like 2-PPM, this method is based on splitting of the search space into several areas, leading to elementary searches. The efficiency of the proposed method is evaluated using a multi-objective flow-shop problem.  相似文献   

16.
The problem of portfolio selection is a standard problem in financial engineering and has received a lot of attention in recent decades. Classical mean–variance portfolio selection aims at simultaneously maximizing the expected return of the portfolio and minimizing portfolio variance. In the case of linear constraints, the problem can be solved efficiently by parametric quadratic programming (i.e., variants of Markowitz’ critical line algorithm). However, there are many real-world constraints that lead to a non-convex search space, e.g., cardinality constraints which limit the number of different assets in a portfolio, or minimum buy-in thresholds. As a consequence, the efficient approaches for the convex problem can no longer be applied, and new solutions are needed.In this paper, we propose to integrate an active set algorithm optimized for portfolio selection into a multi-objective evolutionary algorithm (MOEA). The idea is to let the MOEA come up with some convex subsets of the set of all feasible portfolios, solve a critical line algorithm for each subset, and then merge the partial solutions to form the solution of the original non-convex problem. We show that the resulting envelope-based MOEA significantly outperforms existing MOEAs.  相似文献   

17.
An evolutionary artificial immune system for multi-objective optimization   总被引:1,自引:0,他引:1  
In this paper, an evolutionary artificial immune system for multi-objective optimization which combines the global search ability of evolutionary algorithms and immune learning of artificial immune systems is proposed. A new selection strategy is developed based upon the concept of clonal selection principle to maintain the balance between exploration and exploitation. In order to maintain a diverse repertoire of antibodies, an information-theoretic based density preservation mechanism is also presented. In addition, the performances of various multi-objective evolutionary algorithms as well as the effectiveness of the proposed features are examined based upon seven benchmark problems characterized by different difficulties in local optimality, non-uniformity, discontinuity, non-convexity, high-dimensionality and constraints. The comparative study shows the effectiveness of the proposed algorithm, which produces solution sets that are highly competitive in terms of convergence, diversity and distribution. Investigations also demonstrate the contribution and robustness of the proposed features.  相似文献   

18.
Due to the vagaries of optimization problems encountered in practice, users resort to different algorithms for solving different optimization problems. In this paper, we suggest and evaluate an optimization procedure which specializes in solving a wide variety of optimization problems. The proposed algorithm is designed as a generic multi-objective, multi-optima optimizer. Care has been taken while designing the algorithm such that it automatically degenerates to efficient algorithms for solving other simpler optimization problems, such as single-objective uni-optimal problems, single-objective multi-optima problems and multi-objective uni-optimal problems. The efficacy of the proposed algorithm in solving various problems is demonstrated on a number of test problems chosen from the literature. Because of its efficiency in handling different types of problems with equal ease, this algorithm should find increasing use in real-world optimization problems.  相似文献   

19.
The multi-objective resource allocation problem (MORAP) addresses the important issue which seeks to find the expected objectives by allocating the limited amount of resource to various activates. Resources may be manpower, assets, raw material or anything else in limited supply which can be used to accomplish the goals. The goals may be objectives (i.e., minimizing costs, or maximizing efficiency) usually driven by specific future needs. In this paper, in order to obtain a set of Pareto solution efficiently, we proposed a modified version of ant colony optimization (ACO), in this algorithm we try to increase the efficiency of algorithm by increasing the learning of ants. Effectiveness and efficiency of proposed algorithm was validated by comparing the result of ACO with hybrid genetic algorithm (hGA) which was applied to MORAP later.  相似文献   

20.
Although recent studies have shown that evolutionary algorithms are effective tools for solving multi-objective optimization problems, their performances are often bottlenecked by the suitability of the evolutionary operators with respect to the optimization problem at hand and their corresponding parametric settings. To adapt the search dynamic of evolutionary operation in multi-objective optimization, this paper proposes an adaptive variation operator that exploits the chromosomal structure of binary representation and synergizes the function of crossover and mutation. The overall search ability is deterministically tuned online to maintain a balance between extensive exploration and local fine-tuning at different stages of the evolutionary search. Also, the coordination between the two variation operators is achieved by means of an adaptive control that ensures an efficient exchange of information between the different chromosomal sub-structures throughout the evolutionary search. Extensive comparative studies with several representative variation operators are performed on different benchmark problems and significant algorithmic performance improvements in terms of proximity, uniformity and diversity are obtained with the incorporation of the proposed adaptive variation operator into the evolutionary multi-objective optimization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号