首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The paper proposes a new exact approach, based on a Branch, Bound, and Remember (BB&R) algorithm that uses the Cyclic Best First Search (CBFS) strategy, for the 1|r i |∑U i scheduling problem, a single machine scheduling problem, where the objective is to find a schedule with the minimum number of tardy jobs. The search space is reduced using new and improved dominance properties and tighter upper bounds, based on a new dynamic programming algorithm. Computational results establish the effectiveness of the BB&R algorithm with CBFS for a broad spectrum of problem instances. In particular, this algorithm was able to solve all problems instances, up to 300 jobs, while existing best known algorithms only solve problems instances up to 200 jobs. Furthermore, the BB&R algorithm with CBFS runs one to two orders of magnitude faster than the current best known algorithm on comparable instances.  相似文献   

2.
This paper presents a Branch, Bound, and Remember (BB&R) exact algorithm using the Cyclic Best First Search (CBFS) exploration strategy for solving the ${1|ST_{sd}|\sum T_{i}}$ scheduling problem, a single machine scheduling problem with sequence dependent setup times where the objective is to find a schedule with minimum total tardiness. The BB&R algorithm incorporates memory-based dominance rules to reduce the solution search space. The algorithm creates schedules in the reverse direction for problems where fewer than half the jobs are expected to be tardy. In addition, a branch and bound algorithm is used to efficiently compute tighter lower bounds for the problem. This paper also presents a counterexample for a previously reported exact algorithm in Luo and Chu (Appl Math Comput 183(1):575–588, 2006) and Luo et?al. (Int J Prod Res 44(17):3367–3378, 2006). Computational experiments demonstrate that the algorithm is two orders of magnitude faster than the fastest exact algorithm that has appeared in the literature. Computational experiments on two sets of benchmark problems demonstrate that the CBFS search exploration strategy can be used as an effective heuristic on problems that are too large to solve to optimality.  相似文献   

3.
The Single-Allocation Ordered Median Hub Location problem is a recent hub model introduced by Puerto et al. (2011) [32] that provides a unifying analysis of the class of hub location models. Indeed, considering ordered objective functions in hub location models is a powerful tool in modeling classic and alternative location paradigms, that can be applied with success to a large variety of problems providing new distribution patterns induced by the different users’ roles within the supply chain network. In this paper, we present a new formulation for the Single-Allocation Ordered Median Hub Location problem and a branch-and-bound-and-cut (B&B&Cut) based algorithm to solve optimally this model. A simple illustrative example is discussed to demonstrate the technique, and then a battery of test problems with data taken from the AP library are solved. The paper concludes that the proposed B&B&Cut approach performs well for small to medium sized problems.  相似文献   

4.
This paper presents a branch-and-bound (B&B) algorithm for minimizing the sum of completion times in a single-machine scheduling setting with sequence-dependent family setup times. The main feature of the B&B algorithm is a new lower bounding scheme that is based on a network formulation of the problem. With extensive computational tests, we demonstrate that the B&B algorithm can solve problems with up to 60 jobs and 12 families, where setup and processing times are uniformly distributed in various combinations of the [1,50] and [1,100] ranges.  相似文献   

5.
The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. Extensive investigation has been devoted to developing efficient algorithms to find optimal or near-optimal solutions. This paper proposes a new heuristic algorithm for the JSSP that effectively combines the classical shifting bottleneck procedure (SBP) with a dynamic and adaptive neighborhood search procedure. Our new search method, based on a filter-and-fan (F&F) procedure, uses the SBP as a subroutine to generate a starting solution and to enhance the best schedules produced. The F&F approach is a local search procedure that generates compound moves by a strategically abbreviated form of tree search. Computational results carried out on a standard set of 43 benchmark problems show that our F&F algorithm performs more robustly and effectively than a number of leading metaheuristic algorithms and rivals the best of these algorithms.  相似文献   

6.
In this paper, we consider a two-machine flowshop scheduling problem in which the waiting time of each job between the two machines cannot be greater than a certain time period. For the problem with the objective of minimizing makespan, we identify several dominance properties of the problem and develop a branch-and-bound (B&B) algorithm using the dominance properties. Computational tests are performed on randomly generated test problems for evaluation of performance of the B&B algorithm, and results show that the algorithm can solve problems with up to 150 jobs in a reasonable amount of CPU time.  相似文献   

7.
We consider the corporate tax structuring problem (TaxSP), a combinatorial optimization problem faced by firms with multinational operations. The problem objective is nonlinear and involves the minimization of the firm's overall tax payments i.e. the maximization of shareholder returns. We give a dynamic programming (DP) formulation of this problem including all existing schemes of tax-relief and income-pooling. We apply state space relaxation and state space descent to the DP recursions and obtain an upper bound to the value of optimal TaxSP solutions. This bound is imbedded in a B&B tree search to provide another exact solution procedure. Computational results from DP and B&B are given for problems up to 22 subsidiaries. For larger size TaxSPs we develop a heuristic referred to as the Bionomic Algorithm (BA). This heuristic is also used to provide an initial lower bound to the B&B algorithm. We test the performance of BA firstly against the exact solutions of TaxSPs solvable by the B&B algorithm and secondly against results obtained for large-size TaxSPs by Simulated Annealing (SA) and Genetic Algorithms (GA). We report results for problems of up to 150 subsidiaries, including some real-world problems for corporations based in the US and the UK. Support for this work was provided by the IST Framework 5 Programme of the European Union, Contract IST2000-29405, Eurosignal ProjectMathematics Subject Classification (2000): 90C39, 91B28  相似文献   

8.
In the music industry, the process of signing new musical talent is one of the most complex decision-making problems. The decision, which is generally made by an artist and repertoire (A&R) team, involves consideration of various quantitative and qualitative criteria, and usually results in a low success rate. We conducted a series of mental model interviews with the aim of developing a decision support framework for A&R teams. This framework was validated by creating a decision support system that utilises multi-criteria decision analysis to support decision-making. Our framework and subsequent implementation of the decision support system involving decision rule and weighted sum methods show an improvement in the ability to analyse and decide on greater amounts of talent. This paper serves as a building block for developing systems to aid in this complex decision-making problem.  相似文献   

9.
Computational results are presented for Davidon's new least-square algorithm. Computational experience with this algorithm is reported which motivated the development of a production code version of the algorithm. Several heuristic modifications, which have been added, are described. Fifteen zero-residual test problems have been used in comparing the new production code version with two established versions of the Levenberg-Marquardt algorithm. The production code version of Davidon's least-square algorithm performed faster and used less function evaluations than the Levenberg-Marquardt algorithm in almost every case of the test problems.It is a pleasure to acknowledge and thank M. Thomas, R. & I. Consultant, Western Illinois University Computer Center, for writing the timing routine and taking the time to run the comparison tests on the IBM 360/50. Part of this work was also performed at the Applied Mathematics Division of Argonne National Laboratory under the auspices of the US Energy Research and Development Administration.  相似文献   

10.
Abstract

We consider the performance of three Monte Carlo Markov-chain samplers—the Gibbs sampler, which cycles through coordinate directions; the Hit-and-Run (H&R) sampler, which randomly moves in any direction; and the Metropolis sampler, which moves with a probability that is a ratio of likelihoods. We obtain several analytical results. We provide a sufficient condition of the geometric convergence on a bounded region S for the H&R sampler. For a general region S, we review the Schervish and Carlin sufficient geometric convergence condition for the Gibbs sampler. We show that for a multivariate normal distribution this Gibbs sufficient condition holds and for a bivariate normal distribution the Gibbs marginal sample paths are each an AR(1) process, and we obtain the standard errors of sample means and sample variances, which we later use to verify empirical Monte Carlo results. We empirically compare the Gibbs and H&R samplers on bivariate normal examples. For zero correlation, the Gibbs sampler provides independent data, resulting in better performance than H&R. As the absolute value of the correlation increases, H&R performance improves, with H&R substantially better for correlations above .9. We also suggest and study methods for choosing the number of replications, for estimating the standard error of point estimators and for reducing point-estimator variance. We suggest using a single long run instead of using multiple iid separate runs. We suggest using overlapping batch statistics (obs) to get the standard errors of estimates; additional empirical results show that obs is accurate. Finally, we review the geometric convergence of the Metropolis algorithm and develop a Metropolisized H&R sampler. This sampler works well for high-dimensional and complicated integrands or Bayesian posterior densities.  相似文献   

11.
Many problems arising from machine learning, signal & image recovery, and compressed sensing can be casted into a monotone inclusion problem for finding a zero of the sum of two monotone operators. The forward–backward splitting algorithm is one of the most powerful and successful methods for solving such a problem. However, this algorithm has only weak convergence in the infinite dimensional settings. In this paper, we propose a new modification of the FBA so that it possesses a norm convergent property. Moreover, we establish two strong convergence theorems of the proposed algorithms under more general conditions.  相似文献   

12.
This paper introduces the Two-Echelon Production-Routing Problem. This problem is motivated from the petrochemical industry, enlarging the supply chain integration by taking into account production, inventory, and routing decisions in a two-echelon vendor-managed inventory system. We describe, model, and design a branch-and-cut (B&C) to solve the problem under different inventory policies. We also propose a novel exact algorithm, by employing parallel computing techniques, in order to combine local search procedures within a traditional B&C scheme. We evaluate the performance of our methods through extensive computational experiments, both by comparing the algorithms, the effectiveness of the different inventory policies, and the impact of these policies on the partial costs. We derive many managerial insights based on the results. We also validate our new exact algorithm by solving similar problems from the literature, such as the two-echelon multi-depot inventory-routing (2E-MDIRP) and the classical multi-vehicle production-routing problem (MV-PRP). Computational experiments show that our method is very competitive. Based on 512 experiments for the 2E-MDIRP, our algorithm was able to find 111 new best known solutions (BKS), besides proving 412 optimal solutions, against 298 from the literature. For 336 experiments over small and medium size MV-PRP instances, we proved 242 optimal solutions, 11 more than the exact methods from the literature, besides providing 95 new BKS. Moreover, we were the first to tackle large MV-PRP instances exactly, and in this case, our algorithm provides all BKS for instances up to 50 customers, 20 periods and 5 vehicles, outperforming all meta/matheuristics procedures from the literature.  相似文献   

13.
In this paper, we model and solve profit maximization problem of a telecommunications Bandwidth Broker (BB) under uncertain market and network infrastructure conditions. The BB may lease network capacity from a set of Backbone Providers (BPs) or from other BBs in order to gain profit by leasing already purchased capacity to end-users. BB’s problem becomes harder to deal with when bandwidth requests of end-users, profit and cost margins are not known in advance. The novelty of the proposed work is the development of a mechanism via combining fuzzy and stochastic programming methodologies for solving complex BP selection and bandwidth demand allocation problem in communication networks, based on the fact that information needed for making these decisions is not available prior to leasing capacity. In addition, suggested model aims to maximize BB’s decision maker’s satisfaction ratio rather than just profit. As a solution strategy, the resulting fuzzy stochastic programming model is transformed into deterministic crisp equivalent form and then solved to optimality. Finally, the numerical experiments show that on the average, proposed approach provides 14.30% more profit and 69.50% more satisfaction ratio compared to deterministic approaches in which randomness and vagueness in the market and infrastructure are ignored.  相似文献   

14.
15.
An improved typology of cutting and packing problems   总被引:1,自引:0,他引:1  
The number of publications in the area of Cutting and Packing (C&P) has increased considerably over the last two decades. The typology of C&P problems introduced by Dyckhoff [Dyckhoff, H., 1990. A typology of cutting and packing problems. European Journal of Operational Research 44, 145–159] initially provided an excellent instrument for the organisation and categorisation of existing and new literature. However, over the years also some deficiencies of this typology became evident, which created problems in dealing with recent developments and prevented it from being accepted more generally. In this paper, the authors present an improved typology, which is partially based on Dyckhoff’s original ideas, but introduces new categorisation criteria, which define problem categories different from those of Dyckhoff. Furthermore, a new, consistent system of names is suggested for these problem categories. Finally, the practicability of the new scheme is demonstrated by using it as a basis for a categorisation of the C&P literature from the years between 1995 and 2004.  相似文献   

16.
In this paper a problem of scheduling a single machine under linear deterioration which aims at minimizing the number of tardy jobs is considered. According to our assumption, processing time of each job is dependent on its starting time based on a linear function where all the jobs have the same deterioration rate. It is proved that the problem is NP-hard; hence a branch and bound procedure and a heuristic algorithm with O(n 2) is proposed where the heuristic one is utilized for obtaining the upper bound of the B&B procedure. Computational results for 1,800 sample problems demonstrate that the B&B method can solve problems with 28 jobs quickly and in some other groups larger problems are also solved. Generally, B&B method can optimally solve 85% of the samples which shows high performance of the proposed method. Also it is shown that the average value of the ratio of optimal solution to the heuristic algorithm result with the objective ??(1 ? Ui) is at most 1.11 which is more efficient in comparison to other proposed algorithms in related studies in the literature.  相似文献   

17.
The two-dimensional orthogonal packing problem (2OPP) consists in determining if a set of rectangles (items) can be packed into one rectangle of fixed size (bin). In this paper we propose two exact algorithms for solving this problem. The first algorithm is an improvement on a classical branch&bound method, whereas the second algorithm is based on a new relaxation of the problem. We also describe reduction procedures and lower bounds which can be used within enumerative methods. We report computational experiments for randomly generated benchmarks which demonstrate the efficiency of both methods: the second method is competitive compared to the best previous methods. It can be seen that our new relaxation allows an efficient detection of non-feasible instances.  相似文献   

18.
We consider the three-stage two-dimensional bin packing problem (2BP) which occurs in real-world applications such as glass, paper, or steel cutting. We present new integer linear programming formulations: models for a restricted version and the original version of the problem are developed. Both only involve polynomial numbers of variables and constraints and effectively avoid symmetries. Those models are solved using CPLEX. Furthermore, a branch-and-price (B&P) algorithm is presented for a set covering formulation of the unrestricted problem, which corresponds to a Dantzig-Wolfe decomposition of the polynomially-sized model. We consider column generation stabilization in the B&P algorithm using dual-optimal inequalities. Fast column generation is performed by applying a hierarchy of four methods: (a) a fast greedy heuristic, (b) an evolutionary algorithm, (c) solving a restricted form of the pricing problem using CPLEX, and finally (d) solving the complete pricing problem using CPLEX. Computational experiments on standard benchmark instances document the benefits of the new approaches: The restricted version of the integer linear programming model can be used to quickly obtain near-optimal solutions. The unrestricted version is computationally more expensive. Column generation provides a strong lower bound for 3-stage 2BP. The combination of all four pricing algorithms and column generation stabilization in the proposed B&P framework yields the best results in terms of the average objective value, the average run-time, and the number of instances solved to proven optimality.  相似文献   

19.
We present a new algorithm, iterative estimation maximization (IEM), for stochastic linear programs with conditional value-at-risk constraints. IEM iteratively constructs a sequence of linear optimization problems, and solves them sequentially to find the optimal solution. The size of the problem that IEM solves in each iteration is unaffected by the size of random sample points, which makes it extremely efficient for real-world, large-scale problems. We prove the convergence of IEM, and give a lower bound on the number of sample points required to probabilistically bound the solution error. We also present computational performance on large problem instances and a financial portfolio optimization example using an S&P 500 data set.  相似文献   

20.
A new approach for solving the generalized assignment problem (GAP) is proposed that combines the exact branch & bound approach with the heuristic strategy of tabu search (TS) to produce a hybrid algorithm for solving GAP. The algorithm described uses commercial software to solve sub-problems generated by the TS guiding strategy. The TS approach makes use of the concept of referent domain optimisation and introduces novel add/drop strategies. In addition, the linear programming relaxation of GAP that forms part of the branch & bound approach is itself helpful in suggesting which variables might take binary values. Computational results on benchmark test instances are presented and compared with results obtained by the standard branch & bound approach and also several other heuristic approaches from the literature. The results show the new algorithm performs competitively against the alternatives and is able to find some new best solutions for several benchmark instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号