首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We present an average case analysis of the minimum spanning tree heuristic for the power assignment problem. The worst‐case approximation ratio of this heuristic is 2. We show that in Euclidean d‐dimensional space, when the vertex set consists of a set of i.i.d. uniform random independent, identically distributed random variables in [0,1]d, and the distance power gradient equals the dimension d, the minimum spanning tree‐based power assignment converges completely to a constant depending only on d.  相似文献   

2.
We present PTASs for the disk cover problem: given geometric objects and a finite set of disk centers, minimize the total cost for covering those objects with disks under a polynomial cost function on the disks’ radii. We describe the first FPTAS for covering a line segment when the disk centers form a discrete set, and a PTAS for when a set of geometric objects, described by polynomial algebraic inequalities, must be covered. The latter result holds for any dimension.  相似文献   

3.
The quadratic assignment problem (QAP) is a challenging combinatorial problem. The problem is NP-hard and in addition, it is considered practically intractable to solve large QAP instances, to proven optimality, within reasonable time limits. In this paper we present an attractive mixed integer linear programming (MILP) formulation of the QAP. We first introduce a useful non-linear formulation of the problem and then a method of how to reformulate it to a new exact, compact discrete linear model. This reformulation is efficient for QAP instances with few unique elements in the flow or distance matrices. Finally, we present optimal results, obtained with the discrete linear reformulation, for some previously unsolved instances (with the size n = 32 and 64), from the quadratic assignment problem library, QAPLIB.  相似文献   

4.
We prove that a general convex quadratic program (QP) can be reduced to the problem of finding the nearest point on a simplicial cone inO(n 3 +n logL) steps, wheren andL are, respectively, the dimension and the encoding length of QP. The proof is quite simple and uses duality and repeated perturbation. The implication, however, is nontrivial since the problem of finding the nearest point on a simplicial cone has been considered a simpler problem to solve in the practical sense due to its special structure. Also we show that, theoretically, this reduction implies that (i) if an algorithm solves QP in a polynomial number of elementary arithmetic operations that is independent of the encoding length of data in the objective function then it can be used to solve QP in strongly polynomial time, and (ii) ifL is bounded by a first order exponential function ofn then (i) can be stated even in stronger terms: to solve QP in strongly polynomial time, it suffices to find an algorithm running in polynomial time that is independent of the encoding length of the quadratic term matrix or constraint matrix. Finally, based on these results, we propose a conjecture.corresponding author. The research was done when the author was at the Department of IE & OR, University of California at Berkeley, and partially supported by ONR grant N00014-91-j-1241.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号