首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cation exchange chromatography using conventional resins, having either diffusive or perfusive flow paths, operated in bind-elute mode has been commonly employed in monoclonal antibody (MAb) purification processes. In this study, the performance of diffusive and perfusive cation exchange resins (SP-Sepharose FF (SPSFF) and Poros 50HS) and a convective cation exchange membrane (Mustang S) and monolith (SO(3) Monolith) were compared. All matrices were utilized in an isocratic state under typical binding conditions with an antibody load of up to 1000 g/L of chromatographic matrix. The dynamic binding capacity of the cation exchange resins is typically below 100 g/L resin, so they were loaded beyond the point of anticipated MAb break through. All of the matrices performed similarly in that they effectively retained host cell protein and DNA during the loading and wash steps, while antibody flowed through each matrix after its dynamic binding capacity was reached. The matrices differed, though, in that conventional diffusive and perfusive chromatographic resins (SPSFF and Poros 50HS) demonstrated a higher binding capacity for high molecular weight species (HMW) than convective flow matrices (membrane and monolith); Poros 50HS displayed the highest HMW binding capacity. Further exploration of the conventional chromatographic resins in an isocratic overloaded mode demonstrated that the impurity binding capacity was well maintained on Poros 50HS, but not on SPSFF, when the operating flow rate was as high as 36 column volumes per hour. Host cell protein and HMW removal by Poros 50HS was affected by altering the loading conductivity. A higher percentage of host cell protein removal was achieved at a low conductivity of 3 mS/cm. HMW binding capacity was optimized at 5 mS/cm. Our data from runs on Poros 50HS resin also showed that leached protein A and cell culture additive such as gentamicin were able to be removed under the isocratic overloaded condition. Lastly, a MAb purification process employing protein A affinity chromatography, isocratic overloaded cation exchange chromatography using Poros 50HS and anion exchange chromatography using QSFF in flow through mode was compared with the MAb's commercial manufacturing process, which consisted of protein A affinity chromatography, cation exchange chromatography using SPSFF in bind-elute mode and anion exchange chromatography using QSFF in flow through mode. Comparable step yield and impurity clearance were obtained by the two processes.  相似文献   

2.
3.
Accurate prediction of the elution tendency of monoclonal antibodies in column chromatography would be beneficial for the efficient setup of purification procedures. Hydroxyapatite chromatography experiments using 37 recombinant human monoclonal antibodies were performed by sodium chloride gradient elution with 5 mM sodium phosphate to correlate the retention times with antibody structures (subclass and light‐chain isotypes). The contribution of metal affinity interactions in the interaction of antibodies with hydroxyapatite was investigated by (i) eliminating 5 mM sodium phosphate in buffers, (ii) comparing sodium chloride versus sodium phosphate gradient elutions, and (iii) using IgG4 antibodies with a leucine→glutamate mutation. By using antibodies of different subclasses but with identical Fab regions, the elution behavior in sodium chloride elution could be classified by subclass and type of light chain. It is considered that the retention of monoclonal antibodies to hydroxyapatite is affected by the cooperation of phosphoryl cation exchange and metal affinity interactions. The contribution of the metal affinity interactions is greater in the sodium chloride gradient elution method than in the sodium phosphate gradient elution method.  相似文献   

4.
A library of cold shock protein B mutant variants was employed to examine differences in protein binding behavior in ion exchange and multimodal chromatography. Single site mutations introduced at charged amino acids on the protein surface resulted in a homologous protein set with varying charge density and distribution. The retention times of the mutants varied significantly during linear gradient chromatography in both systems. The majority of the proteins were more strongly retained on the multimodal cation exchange resin as compared to the traditional cation exchanger. Further, the elution order of the mutants on the multimodal resin was different from that obtained with the ion exchanger. Quantitative structure–property relationship models generated using a support vector regression technique were shown to provide good predictions for the retention times of protein mutants on the multimodal resin. A coarse-grained ligand docking package was employed to examine the various interactions between the proteins and ligands in free solution. The multimodal ligand was shown to utilize multiple interaction types to achieve stronger retention on the protein surface. The use of this protein library in concert with the qualitative and quantitative analyses presented in this paper provides an improved understanding of protein behavior in multimodal chromatographic systems.  相似文献   

5.
Protein A affinity chromatography is a standard method of purifying murine monoclonal antibodies (mabs), primarily because it can be performed easily and achieves high-purity levels. Because of its high concentration capacity, it lends itself particularly well to the isolation of mabs from the supernatants of hybridoma cultures. Unfortunately, murine immunoglobulin (Ig) G1 antibodies, a subclass which occurs frequently in the IgG mabs of mice, binds very poorly to protein A, leading to problems in this isolation procedure. For this reason an attempt was made to increase the effectiveness of protein A affinity chromatography in purifying mabs of this IgG subclass by optimizing the binding conditions. The influence of ionic strength, pH and temperature on the binding capacity of a protein A column was studied. The results show the significance of temperature in the binding of the murine IgG1 mab tested to protein A. Further investigations were carried out to optimize the elution conditions and to study the contamination of mab preparations obtained with non-specific bovine protein A reactive Igs originating from culture medium supplement (10% foetal calf serum). An optimized, automatic single-step procedure to obtain highly purified murine IgG1 mabs from hybridoma culture supernatants was developed.  相似文献   

6.
The serotype specificity of adenovirus ion‐exchange chromatography has previously been studied using standard particle‐based columns, and the hexon protein has been reported to determine retention time. In this study, we have submitted Adenovirus type 5 recombinants to anion‐exchange chromatography using methacrylate monolithic supports. Our experiments with hexon‐modified adenoviral vectors show more precisely that the retention time is affected by the substitution of amino acids in hypervariable region 5, which lies within the hexon DE1 loop. By exploring the recombinants modified in the fiber protein, we have proven the previously predicted chromatographic potential of this surface constituent. Modifications that preserve the net charge of the hexon protein, or those that cause only a small charge difference in the fiber protein, in addition to shortening the fiber shaft, did not change the chromatographic behavior of the adenovirus particles. However, modifications that include the deletion of just two negatively charged amino acids in the hexon protein, or the introduction of a heterologous fiber protein, derived from another serotype, revealed recognizable changes in anion‐exchange chromatography. This could be useful in facilitating chromatography‐approach purification by creating targeted capsid modifications, thereby shifting adenovirus particles away from particular interfering substances present in the crude lysate.  相似文献   

7.
Predictive chromatographic simulations were used to assess whether significant aggregate clearance, in addition to high step recovery and limited eluate pool volumes, can be achieved during protein A affinity chromatography capture steps. Such aggregates of the antibody monomer are commonly found in manufacturing processes. A lumped desorption-kinetic limiting model was used to describe the elution from the chromatography column, as batch isotherm measurements indicated no adsorption under elution conditions. In order to quantify the trade-off between step recovery and aggregate clearance, independent experiments were first performed to obtain the key kinetic parameters. These parameters were used in simulations to predict the behavior of bench-scale protein A column runs and identify robust operating windows within which good yields and significant aggregate clearance can be achieved. Two examples are described. For antibody A, a robust window of operation was identified. In this case, the optimal conditions were transferred to pilot-plant scale, and the resulting experimental data were shown to be in good agreement with model predictions. For antibody B, it was found that conditions resulting in high recovery and good aggregate clearance were not robust: at the optimal elution conditions, changes of ±0.1 units in pH or ±1 mS/cm in conductivity affected the results substantially.  相似文献   

8.
The rise of biosimilar monoclonal antibodies has renewed the interest in monoclonal antibody (mAb) charge variants composition and separation. The sample displacement chromatography (SDC) has the potential to overcome the low separation efficiency and productivity associated with bind-elute separation of mAb charge variants. SDC in combination with weak cation exchanging macroporous monolithic chromatographic column was successfully implemented for a separation of charge variants and aggregates of monoclonal IgG under overloading conditions. The charge variants composition was at-line monitored by a newly developed, simple and fast analytical method, based on weak cation exchange chromatography. It was proven that basic charge variants acted as displacers of IgG molecules with lower pI, when the loading was performed 1 to 1.5 pH unit below the pI of acidic charge variants. The efficiency of the SDC process is flow rate independent due to a convection-based mass transfer on the macroporous monolith. The productivity of the process at optimal conditions is 35 mg of purified IgG fraction per milliliters of monolithic support with 75–80% recovery. As such, an SDC approach surpasses the standard bind-elute separation in the productivity for a factor of 3, when performed on the same column. The applicability of the SDC approach was confirmed for porous particle-based column as well, but with 1.5 lower productivity compared to the monoliths.  相似文献   

9.
The interest in understanding fundamental mechanisms underlying chromatography drastically increased over the past decades resulting in a whole variety of mostly semi-empirical models describing protein retention. Experimental data about the molecular adsorption mechanisms of lysozyme on different chromatographic ion-exchange materials were used to develop a mechanistical model for the adsorption of lysozyme onto a SP Sepharose FF surface based on molecular dynamic simulations (temperature controlled NVT simulations) with the Amber software package using a force-field based approach with a continuum solvent model. The ligand spacing of the adsorbent surface was varied between 10 and 20 Å. With a 10 Å spacing it was possible to predict the elution order of lysozyme at different pH and to confirm in silico the pH-dependent orientation of lysozyme towards the surface that was reported earlier. The energies of adsorption at different pH values were correlated with isocratic and linear gradient elution experiments and this correlation was used to predict the retention volume of ribonuclease A in the same experimental setup only based on its 3D structure properties. The study presents a strong indication for the validity of the assumption, that the ligand density of the surface is one of the key parameters with regard to the selectivity of the adsorbent, suggesting that a high ligand density leads to a specific interaction with certain binding sites on the protein surface, while at low ligand densities the net charge of the protein is more important than the actual charge distribution.  相似文献   

10.
A comparison of two separation columns for high-capacity anion chromatography is presented. The distinctive feature of both packing materials is the structure of the alkyl-chain (spacer-group) between the polymer-backbone and the functional group. All other parameters, e.g. exchange capacity, functionality and length of the spacer-arm, are identical. The retention behavior of the so-called standard-anions is investigated on both columns under identical chromatographic conditions using an experimental design technique in the course of which the composition of the elution system applied is varied. The statistical treatment of the retention data offers the possibility to explain the different chromatographic behavior of both stationary phases, at least qualitatively.  相似文献   

11.
For accelerating the purification process development of human monoclonal antibodies (hmAbs) for pharmaceutical drugs, we designed a standardized method for setting the conditions of the purification process, which could be applied to hmAbs for the early phase of pharmaceutical development. The process includes three sequential chromatography steps: Protein A affinity chromatography (AFC), anion-exchange chromatography (AIEC) and cation-exchange chromatography (CIEC), and also includes a low pH virus inactivation step after the AFC step. We predicted the elution pH in the AFC and elution salt concentration in the CIEC from the amino acid sequences of hmAbs, as described in our previous paper. The mobile phase pH in AIEC and the pH for virus inactivation were also predicted based on the amino acid sequence of hmAb. As a case study, six hmAbs (two of IgG(1), two of IgG(2) and two of IgG(4)) were purified with the standardized method. The recovery, purity and clearance of impurities (DNA, host cell proteins (HCP), and Protein A) were examined. All the six hmAbs were purified with high recovery and high clearance of the impurities. Factors affecting the impurities level in the purified products are also discussed.  相似文献   

12.
13.
A basic method for dissociation and fractionation of monoclonal IgG heavy and light chain is described. It employs less noxious and hazardous reagents than the classical mercaptoethanol/propionic acid process and replaces size exclusion chromatography with cation exchange on a monolith to improve productivity. Significant scope remains to refine the conditions. The method can be applied to other disulfide bonded proteins with significant affinity for cation exchangers.  相似文献   

14.
Several aliphatic ionenes (2-6-, 6-6-, 10-6-ionene) have been prepared as ion exchangers for the development of novel high-performance stationary phases for anion chromatography (IC). A macroporous polystyrene/divinylbenzene (PS/DVB) resin with adjusted cation exchange capacity was used as support. Therefore the immobilization of ionenes to polystyrene carriers with remaining positive surface charge became possible for the first time. Strong ion-exchange interactions, resulting in high retention times, between the stationary phase and inorganic as well as organic anionic analytes have been observed. The influence of different ionenes on the retention behaviour during the ion chromatographic separation was investigated. Additionally, partly aromatic and polar ionene backbones were prepared and their retention behaviour as anion exchanger was investigated. The highest number of theoretical plates obtained was about 90.000 per meter. The signal asymmetries were generally lower than obtained for surface functionalized anion exchangers.  相似文献   

15.
A comparison of two separation columns for high-capacity anion chromatography is presented. The distinctive feature of both packing materials is the structure of the alkyl-chain (spacer-group) between the polymer-backbone and the functional group. All other parameters, e.g. exchange capacity, functionality and length of the spacer-arm, are identical. The retention behavior of the so-called standard-anions is investigated on both columns under identical chromatographic conditions using an experimental design technique in the course of which the composition of the elution system applied is varied. The statistical treatment of the retention data offers the possibility to explain the different chromatographic behavior of both stationary phases, at least qualitatively.  相似文献   

16.
17.
Hao J  Wang F  Dai X  Gong B  Wei Y 《Talanta》2011,85(1):482-487
A novel stationary phase for weak cation exchange (WCX) and hydrophilic interaction chromatography (HILIC) was prepared with surface-initiated atom transfer radical polymerization (SI-ATRP). Vinyltetrazole was grafted onto the surface of the beads in water medium with the polyglycidylmethacrylate beads (PGMA/EDMA) previously modified with 2-bromoisobutryl bromide as the macromolecule initiators and CuCl as catalyst. The poly(vinyltetrazole)-grafted beads obtained with different atom transfer radical polymerization (ATRP) formulations were tried as chromatographic packings in ion-exchange chromatography. The results showed that the prepared columns could separate the tested proteins with high efficiency and high capacity, and the retention time of protein had a positive relationship with increasing the chain lengths of the grafted poly(vinyltetrazole) (PVT). The prepared column was also found to be able to separate nucleosides by hydrophilic interaction chromatographic mode.  相似文献   

18.
A cation exchange chromatographic purification process step was developed for the purification of human PEGylated PYY 3–36 from the PEGylation reaction mixture. In this publication we describe experiments carried out to evaluate the chromatographic performance of arginine chloride as an effective cation exchange chromatography eluent. Using arginine we obtained improved recovery and resolution during chromatographic purification of a peptide PEGylation reaction mixture. The chromatographic elution performance of arginine was compared to other cationic amino acids and sodium chloride. Arginine provided higher yield and better resolution of product from other process impurities. The process was successfully scaled up to produce clinical supplies. The basis for improvement in process performance with arginine was characterized by examining the effect of buffer and concentration of the PEGylated peptide on hydrodynamic volume of the molecule in solution. These results were used to predict the behavior of the molecule in the chromatography process. The enhanced chromatographic performance could be attributed to changes in molecular size with concentration, higher eluent strength of arginine, and resulting changes in mass transfer resistance.  相似文献   

19.
Glycosylation of the conserved asparagine residue in CH2 domains of IgG molecules is an important post-translational modification. The presence of oligosaccharides is critical for structure, stability and biological function of IgG antibodies. Effect of the glycosylation states of recombinant monoclonal antibodies on protein A and protein G chromatography was evaluated. Antibodies lacking oligosaccharides eluted later from protein A and earlier from protein G columns than antibodies with oligosaccharides using a gradient of decreasing pH. Interestingly, different types of oligosaccharides also affected the elution of the antibodies. Antibodies with high mannose type oligosaccharides were enriched in later eluting fractions from protein A and earlier eluting fractions from protein G. While antibodies with more mature oligosaccharides, such as core fucosylated biantennary complex oligosaccharides with zero (Gal 0), one (Gal 1) or two (Gal 2) terminal galactoses, were enriched in earlier eluting fractions from protein A and in the later eluting fractions from protein G. However, analysis by enzyme-linked immunosorbent assay (ELISA) revealed that antibody binding affinity to protein A and protein G was not affected by the absence or presence of oligosaccharides. It was thus concluded that the elution difference of antibodies with or without oligosaccharides and antibodies with different types of oligosaccharides were due to differential structural changes around the CH2–CH3 domain interface under the low pH conditions used for protein A and protein G chromatography.  相似文献   

20.
By combining conventional DEAE chromatography with high-performance liquid chromatography on Sephacryl S-200 HR and Mono-Q columns, we have been able to isolate and fractionate human pepsinogen A (PGA) isozymogens from large amounts of urine. This method of fractionation is simple and allows one to obtain pepsinogen in a native non-denatured conformation. The isozymogens are homogeneous by electrophoretic and chromatographic criteria; this was confirmed by N-terminal amino acid sequencing. Purified PGA-3 and PGA-5 can be converted into an additional, more anionic, isoform on incubation at 37 degrees C. This isoform exists not only in vitro but also in vivo. The net negative charge of the PGA isozymogens is in the order PGA-5 less than deamidated PGA-5 less than PGA-3 less than deamidated PGA-3. Surprisingly, the elution order on the Mono-Q column was PGA-5/PGA-3/deamidated PGA-5/deamidated PGA-3. We have performed molecular modelling on PGA to investigate this phenomenon in terms of surface charge (not net charge) of the proteins. The model provides evidence that (1) only a fraction of the protein surface interacts with the support and (2) regions of localized charge at the protein surface may allow portions of the external surface to dominate chromatographic behaviour, resulting in a steering of the proteins with respect to the oppositely charged matrix. Pepsinogens may serve as model proteins for elucidating some of the variables that determine the chromatographic behaviour of proteins on ion-exchange columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号