首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical study of the structural, elastic and thermodynamic properties of the cubic zinc-blende (ZB) structure InN are presented in this paper by performing first principles calculations within local density approximation. The values of lattice constant, bulk modulus and its pressure derivatives and elastic constants are in excellent agreement with the available experimental data and other theoretical results. It is found that the ZB structure InN should be unstable above 20 GPa mechanically. The pressure and temperature dependencies of the bulk modulus, the heat capacity and the thermal expansion coefficient and the entropy S, as well as the Grüneisen parameter are obtained by the quasi-harmonic Debye model in the ranges of 0-1500 K and 0-25 GPa.  相似文献   

2.
We have evolved an effective interionic interaction potential to investigate the pressure-induced phase transitions from zinc blende (B3) to rock salt (B1) structure in II-VI [ZnSe] semiconductors. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are deduced. Keeping in mind that both of the ions are polarisable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients. The estimated value of the phase transition pressure (P t ) is higher than in the reported data, and the magnitude of the discontinuity in volume at the transition pressure is consistent with that data. The major volume discontinuity in the pressure-volume phase diagram identifies the structural phase transition from zinc blende to rock salt structure.

The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. It is inferred that the vdW interaction is effective in obtaining the thermodynamic parameters such as the Debye temperature, the Gruneisen parameter, the thermal expansion coefficient and the compressibility. However, the inconsistency between the thermodynamic parameters as obtained from present model calculations and their experimental values is attributed to the fact that we have derived our expressions by assuming the overlap repulsion to be significant only up to the nearest second-neighbor ions, as well as neglecting thermal effects. It is thus argued that full analysis of the many physical interactions that are essential to binary semiconductors will lead to a consistent explanation of the structural and elastic properties of II–VI semiconductors.  相似文献   

3.
We investigate the structural, thermodynamic and electronic properties of Os by plane-wave pseudopotential density functional theory method. The obtained lattice constants, bulk modulus and cell volumes per formula unit are well consistent with the available experimental data. Especially, from our calculated bulk modulus, we conclude that Os is more compressible than diamond. Moreover, the temperature induced phase transition of Os from HCP structure to FCC structure has been obtained. It is found that the transition temperature of Os at zero pressure is 2702 K. However no transition pressure is found in our calculations. The effect of bulk modulus B as well as other thermodynamic properties of Os (including the thermal expansion α and the Grüneisen constant γ) on temperatures have also been studied. Our calculated thermal expansion α=1.510×10−5 K−1 and the Grüneisen constant γ=2.227 for HCP structure at room temperature agree very well with the experimental data. The density of states for HCP structure at 0 K and FCC structure at transition temperature 2702 K are also investigated in our work.  相似文献   

4.
We investigate the structural, phase transition and elastic properties of SnO2 in the rutile-type, pyrite-type, ZrO2-type and cotunnite-type phases by the plane-wave pseudopotential density functional theory method. The lattice constants, bulk modulus and its pressure derivative are well consistent with the available experimental and other theoretical data. Also, we find that the rutile→pyrite, pyrite→ZrO2 and ZrO2→cotunnite phase transition occur at 12.9, 59.1 and 111.1 GPa, which are in better agreement with the experimental results than those of Gracia et al. (2007). Moreover, we obtain the pressure dependences of elastic constants for the four structures.  相似文献   

5.
The phase transition of SrS from NaCl structure (B1) to CsCl structure (B2) is investigated by means of ab initio plane-wave pseudopotential density functional theory, and the thermodynamic properties of the B1 and the B2 structures are obtained through the quasi-harmonic Debye model. It is found that the transition phase from the B1 to the B2 structures occurs at 17.9 GPa, which is in good agreement with experimental data and other calculated results. Moreover, the thermodynamic properties (including specific heat capacity, the Debye temperature, thermal expansion and Griineisen parameter) have also been obtained successfully.  相似文献   

6.
The structural and thermodynamic properties of titanium nitride (TiN) have been investigated by merging first-principles calculations and particle-swarm algorithm. The three phases are identified for TiN, including the B1, the P63/mmc, and the B2 phases. A new phase of anti-TiP structure with the space group P63/mmc has been predicted. The calculated phase transition from the B1 to the P63/mmc occurs at 270 GPa. The vibrational, elastic, and thermodynamic properties for the three phases have been calculated and discussed.  相似文献   

7.
用PBE形式下的广义梯度近似(GGA)赝势平面波方法研究了氮化铂的结构相变以及弹性性质,计算了氮化铂的氯化钠(B1)、氯化铯(B2)、闪锌矿(B3)、纤维矿(B4)等四种结构并应用高压下的焓与压强的关系,得出在常温常压下B4结构是最稳定的结构,这与Yu 等人得的结果一致,且 B4→B1及B1→B2的相变压强分别发生在36.7 GPa和 185.4 GPa,同时,研究了B4结构在高压的弹性性质,发现弹性常数、体模量、剪切模量、压缩波速、剪切波速以及德拜温度均随着压强的增大而单调增大  相似文献   

8.
用PBE形式下的广义梯度近似(GGA)赝势平面波方法研究了氮化铂的结构相变以及弹性性质,计算了氮化铂的氯化钠(B1)、氯化铯(B2)、闪锌矿(B3)、纤维矿(B4)等四种结构并应用高压下的焓与压强的关系,得出在常温常压下B4结构是最稳定的结构,这与Yu 等人得的结果一致,且 B4→B1及B1→B2的相变压强分别发生在36.7 GPa和 185.4 GPa,同时,研究了B4结构在高压的弹性性质,发现弹性常数、体模量、剪切模量、压缩波速、剪切波速以及德拜温度均随着压强的增大而单调增大  相似文献   

9.
The structural phase stability, elastic parameters and thermodynamic properties of YN at normal and under high pressure are reported. The calculations are mainly performed using the full-potential linearized augmented plane wave method within the density functional theory. Both local density approximation (LDA) and generalized gradient approximation (GGA) are used to model the correlation-exchange potential. The calculated equilibrium lattice parameter and the bulk modulus show good accordance with the experimental and previous theoretical reports. The phase transition from the NaCl (B1) structure to the CsCl (B2) structure is found to occur at 131?GPa within GGA and 115?GPa within LDA. The linear pressure coefficients of the different elastic moduli being addressed here are also determined along with the mechanical and dynamical stability criteria which are shown to be satisfied for YN with B1 phase under normal conditions. Besides, the heat capacity and other thermodynamic parameters are examined and discussed versus temperature.  相似文献   

10.
11.
We have performed the first-principles and classical molecular dynamics simulations to investigate the phase diagram and thermodynamic properties of Sr under high pressure and temperature. The obtained solid phase diagram of Sr, based on the quasi-harmonic approximation (QHA), is greatly supported by the available experimental data under low pressure. From the coexistence-phase molecular dynamics simulations, we also obtained the high-pressure melting curve of Sr which shows good agreement with the experiment. While, the experimentally observed β-Sn structure of Sr-III was found to be mechanically unstable according to our phonon dispersion calculations and evolutionary algorithm structure searches. We find that α-U phase (space group Cmcm) is energetically favorable and is the good candidate of Sr-III.  相似文献   

12.
The structural, elastic and thermal properties of four transition metal monocarbides ScC, YC (group III), VC and NbC (group V) have been investigated using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA) both at ambient and high pressure. We predict a B1 to B2 structural phase transition at 127.8 and 80.4 GPa for ScC and YC along with the volume collapse percentage of 7.6 and 8.4%, respectively. No phase transition is observed in case of VC and NbC up to pressure 400 and 360 GPa, respectively. The ground state properties such as equilibrium lattice constant (a0), bulk modulus (B) and its pressure derivative (B′) are determined and compared with available data. We have computed the elastic moduli and Debye temperature and report their variation as a function of pressure.  相似文献   

13.
The structural parameters, elastic constants, thermodynamic properties of Imm2-BN under high pressure were calculated via the density functional theory in combination with quasi-harmonic Debye approach. The results showed that the pressure has the significant effect on the equilibrium lattice parameters, elastic and thermodynamic properties of Imm2-BN. The obtained ground state structural parameters are in good agreement with previous theoretical results. The elastic constants, elastic modulus, and elastic anisotropy were determined in the pressure range of 0–90?GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is evaluated and the elastic anisotropy of the Imm2-BN up to 90?GPa is studied in detail. Moreover, the pressure and temperature dependence of thermal expansion coefficient, heat capacity, Debye temperature, and Grüneisen parameter are predicted in a wide pressure (0–90?GPa) and temperature (0–1600?K) ranges. The obtained results are expected to provide helpful guidance for the future synthesis and application of Imm2-BN.  相似文献   

14.
The structural, elastic, electronic, and thermodynamic properties of the cubic NaAlO3-perovskite are calculated using the full potential linearized augmented plane wave with local orbital (FP-LAPW)+lo. The exchange-correlation energy, is treated in generalized gradient approximation (GGA) using the Perdew–Burke–Ernzerhof (PBE) parameterization. The calculated equilibrium parameter is in good agreement with other works. The bulk modulus, elastic constants and their related parameters, such as Young modulus, shear modulus, and Poisson ratio were predicted. The electronic band structure of this compound has been calculated using the Angel-Vosko (EV) generalized gradient approximation (GGA) for the exchange correlation potential. We deduced that NaAlO3-perovskite exhibit a wide-gap which it is an indirect from R to Γ point. The analysis of the density of states (DOS) curves shows ionic and covalent character bond for Al–O and Na–O respectively.  相似文献   

15.
The full potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory as implemented in the WIEN2k package is applied successfully to the study of the equilibrium lattice parameter and the elastic constants of the cubic B20 structural CoSi. The quasi-harmonic Debye model, in which the phononic effects are considered, is used to investigate the thermodynamic properties of B20 CoSi. Young's modulus and Poisson ratio are obtained from the calculated elastic constants and compared with the available data. The pressure and temperature dependence of the volume, the bulk modulus, the thermal expansion coefficient, the heat capacity and the Debye temperature are successfully obtained in the whole pressure range from 0 to 40 GPa and temperature range from 0 to 1400 K .  相似文献   

16.
The lattice constants, enthalpies of formation, elastic constants and electronic structures of Al-Sr intermetallics have been calculated by first-principles method within generalized gradient approximation. The calculated lattice constants and enthalpies of formation are in good agreement with experimental and other theoretical results. The polycrystalline bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are also estimated from the calculated single crystalline elastic constants. The total and partial electronic densities of state for the intermetallics were obtained, and the results indicated that Al2Sr-oI is more stable than Al2Sr-cF. Finally, longitudinal, transverse and average sound velocities and Debye temperature are estimated.  相似文献   

17.
The structural, phase transition, elastic, lattice dynamic and thermodynamic properties of rare-earth compounds PrP and PrAs with NaCl (B1), CsCl (B2), ZB (B3), WC (Bh) and CuAu (L10) structures are investigated using the first principles calculations within the generalized gradient approximation (GGA). For the total-energy calculation, we have used the projected augmented plane-wave (PAW) implementation of the Vienna Ab-initio Simulation Package (VASP). Specifically, some basic physical parameters, e.g. lattice constants, bulk modulus, elastic constants, shear modulus, Young's modulus and Poison's ratio, are predicted. The obtained equilibrium structure parameters are in excellent agreement with the experimental and theoretical data. The temperature and pressure variations of the volume, bulk modulus, thermal expansion coefficient, heat capacity and Debye temperature are calculated in wide pressure and temperature ranges. The phonon dispersion curves and corresponding one-phonon density of states (DOS) for both compounds are also computed in the NaCl (B1) structure.  相似文献   

18.
采用基于粒子群优化算法的结构预测程序CALYPSO, 并结合第一性原理的VASP程序, 在175 GPa发现NbSi2的奇异立方高压相. 在此结构中, Nb原子形成金刚石结构, 而Si原子则形成正四面体镶嵌在金刚石结构中. 声子谱计算结果表明该结构是动力学稳定的. 电子结构分析表明, 六角相和立方相NbSi2均为金属, 对金属性贡献较大的是Nb原子, 而且Nb和Si原子之间存在明显的p-d杂化现象, 电荷更多地聚集在Si四面体中. 利用“应力应变”方法, 计算了NbSi2的弹性常数, 分析了其体积模量、剪切模量、杨氏模量和德拜温度等热动力学性质随压力的变化并进行了详细的讨论. 根据剪切模量和体积模量的比值分析了NbSi2两种相结构的脆性和延展性, 发现压力会导致六角相NbSi2的延展性增加, 但对立方相结构的延展性影响较小; 采用经验算法计算了NbSi2两种相结构硬度变化情况, 结合这一比值进行了详细的分析. 弹性各向异性计算结果表明, 随着压力增加, 六角结构的各向异性增强, 而立方结构的各向异性减小.  相似文献   

19.
The structural, elastic and electronic properties of BiI3 are investigated using the first-principles pseudopotential calculations within the framework of density functional theory. The calculated equilibrium structural parameters agree well with the experimental values. The results show that rhombohedral R-3 structure is low enthalpy structure at zero pressure. R-3 structure will transform into SbI3-type structure (space group P21/c) at about 7.0 GPa. At zero pressure, BiI3 with R-3 symmetry meets the mechanical stability criteria, but BiI3 with P-31 m symmetry is an unstable one mechanically. For R-3 structure, the obtained bulk, shear, and Young’s moduli are 25.6, 15.3 and 38.3 GPa, respectively. BiI3 presents large elastic anisotropy. Debye temperature of R-3 structure calculated is 181 K. The metallization pressure of R-3 structure is about 133 GPa and that of predicted high pressure phase P21/c structure is about 61 GPa, indicating BiI3’s potential application as a nuclear radiation detector under high pressure environment.  相似文献   

20.
李强  黄多辉  曹启龙  王藩侯 《中国物理 B》2013,22(3):37101-037101
The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the orthorhombic Pnma structure.It is found that at ambient temperature,the phase transition from the trigonal R3c phase to the orthorhombic Pnma phase is a first-order antiferromagnetic-nonmagnetic and insulator-metal transition,and occurs at 10.56 GPa,which is in good agreement with experimental data.With increasing temperature,the transition pressure decreases almost linearly.Moreover,the thermodynamic properties including Grneisen parameter,heat capacity,entropy,and the dependences of thermal expansion coefficient on temperature and pressure are also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号