首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present work reports the electrical properties of high-purity single-crystal TiO(2) from measurements of the electrical conductivity in the temperature range 1073-1323 K and in gas phases of controlled oxygen activities in the range 10(-13) to 10(5) Pa. The effect of the oxygen activity on the electrical conductivity indicates that oxygen vacancies are the predominant defects in the studied ranges of temperature and oxygen activities. The electronic and ionic lattice charge compensations were revealed at low and high oxygen activities, respectively. The determined semiconducting quantities include: the activation energy of the electrical conductivity (E(sigma) = 125-205 kJ.mol(-1)), the activation energies of the electrical conductivity components associated with electrons (E(n) = 218 kJ.mol(-1)), electron holes (E(p) = 34 kJ.mol(-1)), and ions (E(i) = 227 kJ.mol(-1)), and the enthalpy of motion for electronic defects (DeltaH(m) = 4 kJ/mol). The electrical conductivity data are considered in terms of the components related to electrons, holes, and ions. The obtained data allow the determination of the n-p demarcation line in terms of temperature and oxygen activities. The band gap determined from the electronic component of the electrical conductivity is 3.1 eV.  相似文献   

2.
Four new azo ligands, L1 and HL2-4, of sulfa drugs have been prepared and characterized. [MX(2)(L1)(H(2)O)(m)].nH(2)O; [(MX(2))(2)(HL2 or HL3)(H(2)O)(m)].nH(2)O and [M(2)X(3)(L4)(H(2)O)].nH(2)O; M=Co(II), Ni(II) and Cu(II) (X=Cl) and Zn(II) (X=AcO); m=0-4 and n=0-3, complexes were prepared. Elemental and thermal analyses (TGA and DTA), IR, solid reflectance spectra, magnetic moment and molar conductance measurements have accomplished characterization of the complexes. The IR data reveal that HL1 and HL2-3 ligands behave as a bidentate neutral ligands while HL4 ligand behaves as a bidentate monoionic ligand. They coordinated to the metal ions via the carbonyl O, enolic sulfonamide S(O)OH, pyrazole or thiazole N and azo N groups. The molar conductance data reveal that the chelates are non-electrolytes. From the solid reflectance spectra and magnetic moment data, the complexes were found to have octahedral, tetrahedral and square planar geometrical structures. The thermal behaviour of these chelates shows that the water molecules (hydrated and coordinated) and the anions are removed in a successive two steps followed immediately by decomposition of the ligand in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves applying Coats-Redfern method.  相似文献   

3.
The electrical conduction mechanisms of semicrystalline thermoplastic parylene C (-H(2)C-C(6)H(3)Cl-CH(2)-)(n) thin films were studied in large temperature and frequency regions. The alternative current (AC) electrical conduction in parylene C is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model at low [77-155 K] and high [473-533 K] temperature and the small polaron tunneling mechanism (SPTM) from 193 to 413 K within the framework of the universal law of dielectric response. The conduction mechanism is explained with the help of Elliot's theory, and the Elliot's parameters are determined. From frequency- and temperature-conductivity characteristics, the activation energy is found to be 1.27 eV for direct current (DC) conduction interpreted in terms of ionic conduction mechanism. The power law dependence of AC conductivity is interpreted in terms of electron hopping with a density N(E(F)) (~10(18) eV cm(-3)) over a 0.023-0.03 eV high barrier across a distance of 1.46-1.54 ?.  相似文献   

4.
The photoelectron spectra of the structural isomers of the three- and four-carbon enolate anions, n-C3H5O(-), i-C3H5O(-), n-C4H7O(-), s-C4H7O(-), and i-C4H7O(-) have been measured at 355 nm. Both the X(2A' ') ground and A(2A') first excited states of the corresponding radicals were accessed from the X(1A') ground state of the enolate anions. The separation energies of the ground and first excited states (T0) were determined: T0[(E)-n-C3H5O] = 1.19 +/- 0.02 eV, T0[(Z)-n-C3H5O] = 0.99 +/- 0.02 eV, T0[i-C3H5O] = 1.01 +/- 0.02 eV, T0[n-C4H7O] = 1.19 +/- 0.02 eV, T0[(2,3)-s-C4H7O] = 1.25 +/- 0.02 eV, T0[(1,2)-s-C4H7O] = 0.98 +/- 0.02 eV, and T0[i-C4H7O] = 1.36 +/- 0.02 eV. The effects of alkyl substitution on the vibronic structure and energetics previously observed in the vinoxy radical are discussed. The X(1A')-X(2A' ') relative stability is strongly influenced by substitution whereas the X(1A')-A(2A') relative stability remains nearly constant for all of the observed structural isomers. Alkyl substitution at the carbonyl carbon affects vibronic structure more profoundly than the energetics, while the converse is observed upon alkyl substitution at the alpha carbon.  相似文献   

5.
The mononuclear complexes [Ag(H2L1)(Py)2](NO3) x H2O (1, H2L1 = 2,6-bis(5-methyl-1H-pyrazol-3-yl)pyridine) and [Ag(NO3)(L()] (2, L2 = 2,6-bis(5-methyl-1-isopropyl-1H-pyrazol-3-yl)pyridine), dinuclear complex [Ag2(H2L3)2(HL4)2] (3, H2L3 = 2,6-bis(5-phenyl-1H-pyrazol-3-yl)pyridine, HL4 = 6-(5-phenyl-1H-pyrazolyl-3-yl)picolinate), one-dimensional polymer {[Ag2(H2L1)2](NO3)2 x H2O}(n) (4), and hexanuclear clusters [Ag6(HL1)4](X)2 (X = NO3-, 5 ; BF4-, 6 ; ClO4-, 7) stabilized by pincer-like bispyrazolyl ligands have been prepared and characterized using (1)H NMR spectroscopy, elemental analysis, IR spectroscopy, luminescence spectroscopy and X-ray diffraction. In complex , there is a ligand unsupported Ag-Ag bond between the two silver atoms. Complex displays a one-dimensional polymer consisting of an infinite Ag-Ag chain and every two adjacent silver ions are bridged by an H2L1 ligand. Complexes and have the same Ag6 cores in which six silver atoms are held together by four HL1 and five Ag-Ag bonds, while complex was held together by six Ag-Ag bonds. The silver-silver distances in these complexes are found in the range of 2.874(1)-3.333(2) A for ligand supported, and 3.040(1) A for ligand unsupported Ag-Ag bonds, respectively. Complexes 3-7 are strongly luminescent due to either intraligand or metal-ligand charge transfer processes.  相似文献   

6.
In this contribution we advance and explore the thermally induced hopping (TIH) mechanism for long-range charge transport (CT) in DNA and in large-scale chemical systems. TIH occurs in donor-bridge-acceptor systems, which are characterized by off-resonance donor-bridge interactions (energy gap DeltaE > 0), involving thermally activated donor-bridge charge injection followed by intrabridge charge hopping. We observe a "transition" from superexchange to TIH with increasing the bridge length (i.e., the number N of the bridge constituents), which is manifested by crossing from the exponential N-dependent donor-acceptor CT rate at low N (< N(X)) to a weakly (algebraic) N-dependent CT rate at high N (>N(X)). The "critical" bridge size N(X) is determined by the energy gap, the nearest-neighbor electronic couplings, and the temperature. Experimental evidence for the TIH mechanism was inferred from our analysis of the chemical yields for the distal/proximal guanine (G) triplets in the (GGG)(+)TTXTT(GGG) duplex (X = G, azadine (zA), and adenine (A)) studied by Nakatani, Dohno and Saito [J. Am. Chem. Soc. 2000, 122, 5893]. The TIH sequential model, which involves hole hopping between (GGG) and X, is analyzed in terms of a sequential process in conjunction with parallel reactions of (GGG)(+) with water, and provides a scale of (free) energy gaps (relative to (GGG)(+)) of Delta = 0.21-0.24 eV for X = A, Delta = 0.10-0.14 eV for X = zA, and Delta = 0.05-0.10 eV for X = G. We further investigated the chemical yields for long-range TIH in (G)l(+)Xn(G)l (l = 1-3) duplexes, establishing the energetic constraints (i.e., the donor - bridge base (X) energy gap Delta), the bridge structural constraints (i.e., the intrabridge X-X hopping rates k(m)), and the kinetic constraints (i.e., the rate k(d) for the reaction of with water). Effective TIH is expected to prevail for Delta less than or approximately equal to 0.20 eV with a "fast" water reaction (k(d)/k(m) approximately 10(-3)) and for Delta < 0.30 eV with a "slow" water reaction (k(d)/k(m) approximately 10(-5)). We conclude that (T)n bridges (for which Delta approximately equals 0.6 eV) cannot act in TIH of holes. From an analysis based on the energetics of the electronic coupling matrix elements in G(+)(T-A)n(GGG) duplexes we conclude that the superexchange mechanism is expected to dominate for n = 1-4. For long (A)n bridges (n > or approximately equal to 4) the TIH prevails, provided that the water side reaction is slow, raising the issue of chemical control of TIH through long (A)n bridges in DNA attained by changing the solution composition.  相似文献   

7.
Zheng X  Xie Y  Zhu L  Jiang X  Jia Y  Song W  Sun Y 《Inorganic chemistry》2002,41(3):455-461
A novel solvent-relief-self-seeding (SRSS) process was applied to grow bulk polygonal tubular single crystals of Sb(2)E(3) (E = S, Se), using SbCl(3) and chalcogen elements E (E = S, Se) as the raw materials at 180 degrees C for 7 days in ethanol solution. The products were characterized by various techniques, including X-ray powder diffraction (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), electronic diffraction (ED), and X-ray photoelectron spectra (XPS). The calculated electrical resistivities of the tubular single crystals in the range 20-320 K were of the order of 10(5)-10(6) Omega cm for Sb(2)S(3) and 10(3)-10(4) Omega cm for Sb(2)Se(3), respectively. The studies of the optical properties revealed that the materials formed had a band gap of 1.72 eV for Sb(2)S(3) and 1.82 eV for Sb(2)Se(3), respectively. The optimal reaction conditions for the growth of bulk tubular single crystals were that the temperature was not lower than 180 degrees C and the reaction time was not shorter than 7 days. The possible growth mechanism of tubular crystals was also discussed.  相似文献   

8.
Reactions of two hydrated cupric salts (CuCl(2).2H(2)O and Cu(ClO(4))(2).6H(2)O) with three azopyridyl ligands, viz. 2-[(arylamino)phenylazo]pyridine [aryl = phenyl (HL(1a)), p-tolyl (HL(1b)), and 2-thiomethyl phenyl (HL(1c))], 2-[2-(pyridylamino)phenylazo]pyridine (HL(2)), and 2-[3-(pyridylamino)phenylazo]pyridine (HL(3)), afford the mononuclear [CuClL(1)] (1), dinuclear [Cu(2)X(2)L(2)(2)](n)()(+) (X = Cl, H(2)O, ClO(4); n = 0, 1; 2, 3), and polynuclear [CuClL(3)](n)() (4) complexes, respectively, in high yields. Representative X-ray structures of these complexes 1-4 are reported. X-ray structure analysis of 4 reveals an infinite 1D zigzag chain that adopts a saw-tooth-like structure. Variable-temperature cryomagnetic measurements (2-300 K) on the complexes 2-4 have revealed weak magnetic interactions between the copper centers with J values -1.04, 9.88, and -1.31 cm(-1), respectively. Positive ion ESI mass spectra of the soluble complexes 1-3 are studied which provide the evidence for the integrity of the complexes also in solution. Visible range spectra of the complexes 1-3 in solution consist of intense and broad transitions in the range 700-600 nm. The solid-state spectrum of the insoluble copper complex 4, on the other hand, shows a structured band near 700 nm. The intensities of the transitions of the dinuclear complexes are much higher than those of the corresponding mononuclear copper complexes. Redox properties of the present copper complexes are reported. Notably, the dinuclear complex, 3, displays two successive redox processes: Cu(II)Cu(II) right harpoon over left harpoon Cu(II)Cu(I) right harpoon over left harpoon Cu(I)Cu(I). It catalyzes aerial oxidation of L-ascorbic acid. The catalytic cycle is most effective up to H(2)A/3 (H(2)A = L-ascorbic acid) molar ratio of 20:1.  相似文献   

9.
Synthetic methods have been developed to generate the complete series of resonance-stabilized heterocyclic thia/selenazyl radicals 1a-4a. X-ray crystallographic studies confirm that all four radicals are isostructural, belonging to the tetragonal space group P42(1)m. The crystal structures consist of slipped pi-stack arrays of undimerized radicals packed about 4 centers running along the z direction, an arrangement which gives rise to a complex lattice-wide network of close intermolecular E2---E2' contacts. Variable temperature conductivity (sigma) measurements reveal an increase in conductivity with increasing selenium content, particularly so when selenium occupies the E2 position, with sigma(300 K) reaching a maximum (for E1 = E2 = Se) of 3.0 x 10(-4) S cm(-1). Thermal activation energies E(act) follow a similar profile, decreasing with increasing selenium content along the series 1a (0.43 eV), 3a (0.31 eV), 2a (0.27 eV), 4a (0.19 eV). Variable temperature magnetic susceptibility measurements indicate that all four radicals exhibit S = 1/2 Curie-Weiss behavior over the temperature range 20-300 K. At lower temperatures, the three selenium-based radicals display magnetic ordering. Radical 3a, with selenium positioned at the E1 site, undergoes a phase transition at 14 K to a weakly spin-canted (phi = 0.010 degrees) antiferromagnetic state. By contrast, radicals 2a and 4a, which both possess selenium in the E2 position, order ferromagnetically, with Curie temperatures of T(c) = 12.8 and 17.0 K, respectively. The coercive fields H(c) at 2 K of 2a (250 Oe) and 4a (1370 Oe) are much larger than those seen in conventional light atom organic ferromagnets. The transport properties of the entire series 1a-4a are discussed in the light of Extended Hückel Theory band structure calculations.  相似文献   

10.
The novel heterometallic complex [Cu(4)(NH(3))(4)(HL)(4)][CdBr(4)]Br(2).3dmf.H(2)O has been prepared in the reaction of zerovalent copper with cadmium oxide in the air-exposed solution of ammonium bromide and diethanolamine (H(2)L) in dimethylformamide (dmf). The compound is monoclinic, with space group P2(1)/c, a = 14.876(3) A, b = 33.018(6) A, c = 11.437(2) A, beta = 108.182(3)(o), and Z = 4. The crystal lattice consists of [Cu(4)(NH(3))(4)(HL)(4)](4+) cations, [CdBr(4)](2)(-), Br(-) anions, and uncoordinated dmf and water molecules. In the cation, four independent Cu atoms occupy vertexes of a distorted tetrahedron with bridged Cu...Cu distances in the range 3.127(2)-3.333(3) A and other Cu...Cu separations being 3.445(3)-3.503(2) A. The magnetic susceptibility and the EPR spectra were measured over the temperature ranges 1.8-300 and 3-300 K, respectively. The magnetic moment was found to increase with decreasing temperature to reach a maximum of 2.60 muB per one copper atom at ca. 10 K and was found, subsequently, to diminish slightly at lower temperatures owing to zero-field and Zeeman splitting of the S = 2 ground state. The temperature dependence of the magnetic susceptibility was fitted to the spin Hamiltonian H = J(ab)S(a)S(b) + J(bc)S(b)S(c) + J(cd)S(c)S(d) + J(ad)S(a)S(d) + J(ac)S(a)S(c) + J(bd)S(b)S(d) with the exchange integrals J(ab) = J(bc) = J(cd) = J(ad) = -65(3) cm(-1) and J(ac) = J(bd) = +1(3) cm(-1). High-field, high-frequency (95-380 GHz) EPR spectra due to an S = 2 ground state were simulated with g(x) = 2.138(1), g(y)) = 2.142(1), g(z) = 2.067(1), D = -0.3529(3) cm(-1), and E = -0.0469(8) cm(-1). Calculations based on the X-ray structure indicate a negligible contribution of the magnetic dipole-dipole interactions to the zfs parameters D and E. A discussion of the isotropic and anisotropic exchange interactions and their effect on the zfs parameters is also given.  相似文献   

11.
The electrical, optical, and metal-semiconductor contact properties of the polyaniline prepared by emulsion polymerization have been investigated to obtain an organic semiconductor material. The obtained results suggest that the polyaniline (PANI) studied is an organic semiconductor material with optical band gap (E(g) = 2.21 eV) and room electrical conductivity (sigma(25) = 3.12 x 10(-2) S/cm) values. A Schottky diode with configuration Ag/PANI/n-Si was fabricated. The ideality factor and barrier height of Ag/PANI/n-Si diode at room temperature were found to be 4.59 and 0.38 eV, respectively. The obtained diode parameters change with temperature. The Richardson constant A* value for the Ag/PANI/n-Si diode was found to be 3.81 x 10(-4) A/cm(2).K. The Ag/PANI/n-Si diode is a metal-insulator-semiconductor-type device. The standard deviation, which is a measure of the barrier homogeneity, was found to be 0.14, indicating the presence of interface inhomogeneities. It can be concluded that the polyaniline prepared by emulsion polymerization is an organic semiconductor and Ag/PANI/n-Si configuration shows a Schottky contact.  相似文献   

12.
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

13.
A series of homodinuclear platinum(II) complexes containing bridging chalcogenido ligands, [Pt(2)(mu-E)(2)(P empty set N)(4)] (P empty set N=dppy, E=S (1), Se (2); P empty set N=tBu-dppy, E=S (3)) (dppy=2-(diphenylphosphino)pyridine, tBu-dppy=4-tert-butyl-2-(diphenylphosphino)pyridine) have been synthesized and characterized. The nucleophilicity of the [Pt(2)E(2)] unit towards a number of d(10) metal ions and complexes has been demonstrated through the successful isolation of a number of novel heteropolynuclear platinum(II)-copper(I), -silver(I), and -gold(I) complexes: [[Pt(2)(mu(3)-E)(2)(dppy)(4)](2)Ag(3)](PF(6))(3) (E=S (4); Se (5)) and [Pt(2)(dppy)(4)(mu(3)-E)(2)M(2)(dppm)]X(2) (E=S, M=Ag, X=BF(4) (6); E=S, M=Cu, X=PF(6) (7); E=S, M=Au, X=PF(6) (8); E=Se, M=Ag, X=PF(6) (9); E=Se, M=Au, X=PF(6) (10)). Some of them display short metal.metal contacts. These complexes have been found to possess interesting luminescence properties. Through systematic comparison studies, the emission origin has been probed.  相似文献   

14.
A series of oxalate-bridged iron(III) complexes have been synthesized by the reaction of FeCl 3 with oxalic acid (H 2ox) and XCl, where X is a substituted univalent ammonium or an alkaline cation. We have obtained basically two different types of compounds by varying the nature and the shape of the counterion, with the dimensionality of the resulting product being strongly influenced by the counterion. Three-dimensional (3D) networks of oxo- and oxalato-bridged iron(III) ions of the general formula {X 2[Fe 2O(ox) 2Cl 2]. pH 2O} n have been obtained for X = Li (+) ( 1), Na (+) ( 2), and K (+) ( 3) with p = 4 and X = MeNH 3 (+) ( 4), Me 2NH 2 (+) ( 5), and EtNH 3 (+) ( 6) with p = 2. Similar 3D hydroxo- and oxalato-bridged iron(III) networks of the formula {X[Fe 2(OH)(ox) 2Cl 2].2H 2O} n resulted for X = EtNH 3 (+) ( 7a) and PrNH 3 (+) ( 8). Compound 7a undergoes a solid-to-solid transformation, leading to a new species of the formula {(H 3O)(EtNH 3)[Fe 2O(ox) 2Cl 2].H 2O} n ( 7b). Chainlike compounds of the formula {X 2[Fe 2(ox) 2Cl 4]. pH 2O} n [X = Me 2NH 2 (+)( 9, p = 1), Me 3NH (+) ( 10, p = 2), and Me 4N (+) ( 11, p = 0)] have been obtained for the bulkier alkylammonium cations. Magnetic susceptibility measurements in the temperature range 1.9-295 K show the occurrence of weak ferromagnetic ordering due to spin canting in the 3D networks 1- 8, with the value of the critical temperature ( T c) varying with the cation in the range 26 K ( 2) to 70 K ( 8) without significant structural modifications. The last three one-dimensional compounds exhibit the typical behavior of antiferromagnetically coupled chains of interacting spin sextets [ J = -8.3 ( 9), -6.9 ( 10), and -8.4 ( 11) cm (-1) with H = - J summation operator i S i S i+1 ].  相似文献   

15.
The photodissociation dynamics of I3- from 390 to 290 nm (3.18 to 4.28 eV) have been investigated using fast beam photofragment translational spectroscopy in which the products are detected and analyzed with coincidence imaging. At photon energies < or = 3.87 eV, two-body dissociation that generates I- + I2(A 3Pi1) and vibrationally excited I2- (X 2Sigmau+) + I(2P(3/2)) is observed, while at energies > or = 3.87 eV, I*(2P(1/2)) + I2- (X 2Sigmau+) is the primary two-body dissociation channel. In addition, three-body dissociation yielding I- +2I(2P(3/2)) photofragments is seen throughout the energy range probed; this is the dominant channel at all but the lowest photon energy. Analysis of the three-body dissociation events indicates that this channel results primarily from a synchronous concerted decay mechanism.  相似文献   

16.
The bite angle (ligand-metal-ligand angle) is known to greatly influence the activity of catalytically active transition-metal complexes towards bond activation. Here, we have computationally explored how and why the bite angle has such effects in a wide range of prototypical C-X bonds and palladium complexes, using relativistic density functional theory at ZORA-BLYP/TZ2P. Our model reactions cover the substrates H(3)C-X (with X = H, CH(3), Cl) and, among others, the model catalysts, Pd[PH(2)(CH(2))(n)PH(2)] (with n = 2-6) and Pd[PR(2)(CH(2))(n)PR(2)] (n = 2-4 and R = Me, Ph, t-Bu, Cl), Pd(PH(3))X(-) (X = Cl, Br, I), as well as palladium complexes of chelating and non-chelating N-heterocyclic carbenes. The purpose is to elaborate on an earlier finding that bite-angle effects have a predominantly (although not exclusively) steric nature: a smaller bite angle makes more room for coordinating a substrate by bending away the ligands. Indeed, the present results further consolidate this steric picture by revealing its occurrence in this broader range of model reactions and by identifying and quantifying the exact working mechanism through activation strain analyses.  相似文献   

17.
Quantum chemical calculations using density functional theory at the BP86/TZVPP level and ab initio calculations at the SCS-MP2/TZVPP level have been carried out for the group 13 complexes [(NHC)(EX(3))] and [(NHC)(2)(E(2)X(n))] (E=B to In; X=H, Cl; n=4, 2, 0; NHC=N-heterocyclic carbene). The monodentate Lewis acids EX(3) and the bidentate Lewis acids E(2) X(n) bind N-heterocyclic carbenes rather strongly in donor-acceptor complexes [(NHC)(EX(3))] and [(NHC)(2)(E(2)X(n))]. The equilibrium structures of the bidentate complexes depend on the electronic reference state of E(2)X(n), which may vary for different atoms E and X. All complexes [(NHC)(2)(E(2)X(4))] possess C(s) symmetry in which the NHC ligands bind in a trans conformation to the group 13 atoms E. The complexes [(NHC)(2)(E(2)H(2))] with E=B, Al, Ga have also C(s) symmetry with a trans arrangement of the NHC ligands and a planar CE(H)E(H)C moiety that has a E=E π bond. In contrast, the indium complex [(NHC)(2)(In(2) H(2))] has C(i) symmetry with pyramidal-coordinated In atoms in which the hydrogen atoms are twisted above and below the CInInC plane. The latter C(i) form is calculated for all chloride systems [(NHC)(2)(E(2)Cl(2))], but the boron complex [(NHC)(2)(B(2)Cl(2))] deviates only slightly from C(s) symmetry. The B(2) fragment in the linear coordinated complex [(NHC)(2)(B(2))] has a highly excited (3)(1)Σ(g)(-) reference state, which gives an effective B≡B triple bond with a very short interatomic distance. The heavier homologues [(NHC)(2)(E(2))] (E=Al to In) exhibit a anti-periplanar arrangement of the NHC ligands in which the E(2) fragments have a (1)(1) Δ(g) reference state and an E=E double bond. The calculated energies suggest that the dihydrogen release from the complexes [(NHC)(EH(3))] and [(NHC)(2)(E(2)H(n))] becomes energetically more favourable when atom E becomes heavier. The indium complexes should therefore be the best candidates of the investigated series for hydrogen-storage systems that could potentially deliver dihydrogen at close to ambient temperature. The hydrogenation reaction of the dimeric magnesium(I) compound [LMgMgL] (L=β-diketiminate) with [(NHC)(EH(3))] becomes increasingly exothermic with the trend B相似文献   

18.
The Jahn-Teller effect in CH(3)CN(+) (X(2)E) and CD(3)CN(+) (X(2)E) has been found experimentally by zero kinetic energy (ZEKE) photoelectron spectroscopy using coherent extreme ultraviolet (XUV) radiation. The vibronic bands of CH(3)CN(+) (X(2)E) and CD(3)CN(+) (X(2)E) at about 4500 cm(-1) above the ground states have been recorded. The spectra consist mainly of the Jahn-Teller active C-C[triple bond]N bending (v(8)), the CN stretching (v(2)), the CH(3) (CD(3)) deforming (v(6)), and the C-C stretching (v(4)) vibronic excitations. The Jahn-Teller active vibronic bands (v(8)) have been assigned with a harmonic model including linear and quadratic Jahn-Teller coupling terms, taking into account only the single mode vibronic excitation. The ionization potentials of CH(3)CN and CD(3)CN have also been determined, and their values are 12.2040(+/-0.001) and 12.2286(+/-0.001) eV, respectively.  相似文献   

19.
Cao ML  Hao HG  Zhang WX  Ye BH 《Inorganic chemistry》2008,47(18):8126-8133
Two new complexes [Co(H2O)6 Co8(L1)12]X6 x n H2O (X = NO3(-), n = 12 (1); X = HCO3-, n = 24, (2); HL1 = 4,6-bis(2-pyridyl)-1,3,5-triazin-2-ol) have been synthesized and characterized by single-crystal X-ray diffraction. A [Co(H2O)6](2+) ion is encapsuled in the central cavity of the cubelike nanocage [Co(H2O)6 Co8(L1)12](6+) cation, assembled by eight cobalt ions at the corners and twelve bis-bidentate ligands L1 as the edges, via the formation of 12-fold strong hydrogen bonds between the six coordinated water molecules and the oxygen atoms of twelve L1 as a guest. Complex 1 crystallizes in a centrosymmetric space group P1, while 2 is in a very high symmetric space group Im3. In 2, a planar [(HCO3)2](2-) dimer motif R2(2)(8) synthon plus six lattice water molecules constitute a planar supramolecular synthon R8(8)(20), which acts as a four connector, generating a 3D hydrogen-bonded NbO net with cubelike host cavities of approximately 20 A diameter. Interestingly, the cubelike nanocage [Co(H2O)6 Co8(L1)12](6+) cations fill in the cavities as templates. The magnetic properties of 1 have also been studied in the temperature range of 2-300 K, and its magnetic susceptibility obeys the Curie-Weiss law, showing antiferromagnetic coupling.  相似文献   

20.
By introducing the second organic N-heterocyclic ligands 4'-(4-pyridyl)-4,2':6',4'-terpyridine (pyterpy) and 4,4'-bipyridyl (4,4'-bipy), two examples of Cu(II)-diphosphonates, [Cu(3)(HL)(2)(Hpyterpy)(2)]·2H(2)O 1 and [Cu(4)(HL)(2)(4,4'-bipy)(H(2)O)(5)] 2 based on 1-hydroxyethylidenediphosphonic acid (H(5)L = CH(3)C(OH)(PO(3)H(2))(2)), have been hydrothermally obtained and characterized by powder X-ray diffraction, elemental analysis, IR, TG-DSC. The single-crystal X-ray diffractions reveal that compound 1 has a one-dimensional fishbone-like chain constructed by anions [Cu(3)(HL)(2)(2-)](n) while simultaneously organic cations [Hpyterpy(+)](n) suspending both sides, and compound 2 exhibits two-dimensional inorganic-organic alternate arrangement layer built from 1-D ladder-like inorganic chain with tetranuclear cluster [Cu(4)O(10)] via 4,4'-bipy linkage. The results of electrochemical measurements indicate half-wave potential of 1 (E(1/2)(1) = 1.01 V) is less than that of 2 (E(1/2)(2) = 1.20 V), indicating a good D-A system in ICT for 1. Moreover fluorescent measurements reveal that emission intensity of 1 centered at 422 nm is larger than that of 2 emitted at 420 nm, caused by intraligand π*-π emission state of organic N-heterocyclic amine (λ(ex) = 233 nm). Magnetism data indicate that compound 1 exhibits ferrimagnetic interactions between metal centers, while compound 2 has antiferromagnetic property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号