首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anisotropy of the near-bandgap absorption is investigated in AgAsS2 crystals. The refraction indices, n and n respectively for the Ec and Ec polarizations as well as the spectral dependence of the refraction indices difference, Δn=n‖−n are determined from the interference spectra of AgAsS2 crystals. A transmission band with four maxima is observed in the transmission spectra of crystals placed between crossed polarizers. The optical parameters n, k, ε1, and ε2 for the Ec and Ec polarizations are calculated from the reflection spectra by using the Kramers–Kronig relations.  相似文献   

2.
In this work, the photoelectric properties of gallium selenide (GaSe) monocrystals in the edge absorption region, with various configurations of current contacts, at low and high optical excitation levels are investigated. The photoconductivity spectrum behavior is determined by localized electronic and excitonic states along c-axis. It is shown that the localization of electronic and excitonic states in one-dimensional fluctuation potential along c-axis results to an anisotropy in photoconductivity spectrum at various current contacts configurations. At Ec the photoconductivity is observed in the  < Eg and  > Eg regions. In the case of hv < Eg, the maximum photoconductivity, in the impurity and exciton absorption region are observed at 1.975 eV and 2.102 eV, respectively. With rising of excitation energy level, suppression of photoconductivity in the exciton absorption region and increases in impurity absorption region is observed. At E||c contact configuration, the considerable photoconductivity is observed only in the impurity absorption region, which also increases with rising of excitation level. It is supposed that, suppression of photoconductivity in the exciton absorption region at high excitation levels is connected with exciton-exciton interaction, which results to a nonlinear light absorption. The results are compared with the absorption and photoluminescence measurements.  相似文献   

3.
The λ-modulated exciton reflection spectra of Tl3AsS3 crystals are investigated at 8 and 77 K, in which the ground (n=1) and excited (n=2, 3) exciton states are revealed. Taking into account the spatial dispersion, the shapes of λ-modulated reflection spectra of the n=1 line are calculated and the basic parameters of excitons and bands are determined (the translational and reduced masses of excitons and the effective masses of electrons and light and heavy holes). The one-phonon reflection spectra are studied in the region from 50 to 500 cm?1 in polarizations E ∥ c and E ⊥ c. The shapes of one-phonon reflection spectra are calculated and the parameters of vibrational modes E and A 2 are determined.  相似文献   

4.
The photoluminescence, photoconductivity and absorption in GaSe0.9Te0.1 alloy crystals have been investigated as a function of temperature and external electric field. It has been observed that the exciton peaks shift to lower energy in GaSe0.9Te0.1 alloy crystals compared to GaSe crystals. The long wavelength tails of interband photoluminescence, photoconductivity and absorption spectra are determined by the free exciton states and show an Urbach-Martienssen-type dependence to the photon energy. The maxima of the extrinsic photoluminescence and photoconductivity spectra were found to be determined by the acceptor centers with an energy of EA=EV+0.19 eV formed by the polytypism and defects complexes that include Se and Te anions.  相似文献   

5.
The nonmodulated and wavelength-modulated reflection spectra of CuGaS2 crystals for the polarization EIIc of 10 K are studied. The states n = 1, 2 and 3 of the excitons Γ4 (A-excitons) and n = 1, n = 2 of B- and C-excitons are found. The nonmodulated absorption spectra for the polarization Ec at 10 K have been studied. The states n = 1, 2 and 3 of Γ5 excitons are found. The main parameters of the A (Γ4, Γ5) and B, C exciton series at the energies of the longitudinal and transverse excitons Γ4 for the states n = 1 and n = 2, the effective masses of electrons and holes are determined. The photoluminescence peaks were observed at n = 3 and n = 4 of the excitons Γ5 in the luminescence spectra excited by the line 4880 Å of Ar+ laser. In the luminescence spectra the interference is found.  相似文献   

6.
The electronic and crystal structures of SrMgF4 single crystals grown by the Bridgman method have been investigated. The undoped SrMgF4 single crystals have been studied using low-temperature (T = 10 K) time-resolved fluorescence optical and vacuum ultraviolet spectroscopy under selective excitation by synchrotron radiation (3.7–36.0 eV). Based on the measured reflectivity spectra and calculated spectra of the optical constants, the following parameters of the electronic structure have been determined for the first time: the minimum energy of interband transitions E g = 12.55 eV, the position of the first exciton peak E n = 1 = 11.37 eV, the position of the maximum of the “exciton” luminescence excitation band at 10.7 eV, and the position of the fundamental absorption edge at 10.3 eV. It has been found that photoluminescence excitation occurs predominantly in the region of the low-energy fundamental absorption edge of the crystal and that, at energies above E g , the energy transfer from the matrix to luminescence centers is inefficient. The exciton migration is the main excitation channel of photoluminescence bands at 2.6–3.3 and 3.3–4.2 eV. The direct photoexcitation is characteristic of photoluminescence from defects at 1.8–2.6 and 4.2–5.5 eV.  相似文献   

7.
Optical reflection spectra are measured and calculated in PbGa2S4 crystals in the region of resonances related to excitons with large oscillator strength and binding energy (Frenkel excitons). The splitting of the upper valence band in the center of the Brillouin zone due to crystal field (Δcf) and spin orbit (Δso) interaction are determined. Optical reflection spectra are measured and calculated according to Kramers-Kronig relations in the region of 3-6 eV in Ес and Ес polarizations, and the optical constants n, k, ε1 and ε2 are determined. The observed electronic transitions in PbGa2S4 crystals are discussed in the frame of theoretical energy band structure calculation for thiogallate crystals.  相似文献   

8.
SbSCl0.1I0.9 crystals were grown from the vapor phase and reflection spectra were recorded using a Fourier-transform IR spectrometer. The optical parameters and optical functions along the c axis were calculated using an improved Kramers–Kronig technique with two confining spectral limits. The reflection spectra were analyzed using the oscillator parameter fitting technique for comparison of results. The vibrational frequencies ωL and ωT were evaluated. The ferroelectric phase-transition temperature was estimated as 330 K for SbSCl0.1I0.9 from experimental reflection measurements and theoretical investigation of the potential energy of Sb atoms for B1u soft normal modes of SbSI and SbSCl0.1I0.9 crystals.  相似文献   

9.
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52 eV, respectively. The rate of change of the indirect band gap with temperature dEgi/dT=-6.0×10−4 eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.44 eV. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.87 eV, 26.77 eV, 8.48×1013 m−2 and 2.55, respectively.  相似文献   

10.
Optical properties of acousto-optical material Tl3SbS3 were investigated at the fundamental absorption edge. The basic (n = 1) and excited (n = 2, 3) exciton states were obtained from the λ-modulated reflection spectra for polarizations Ec at 10 K. Taking into account the spatial dispersion we determined the parameters of excitons by calculating the spectra shapes of λ-modulated reflection of line n = 1 and estimated values of the zone-translation masse and the reduced effective masse of excitons, the effective masse of electrons , heavy and light holes.  相似文献   

11.
The electronic structures and absorption spectra for both the perfect PbWO4 (PWO) crystal and the three types of PWO crystals, containing VPb2−, VO2+ and a pair of VPb2−-VO2+, respectively, have been calculated using CASTEP codes with the lattice structure optimized. The calculated absorption spectra indicate that the perfect PWO crystal does not occur absorption band in the visible and near-ultraviolet region. The absorption spectra of the PWO crystal containing VPb2− exhibit seven peaks located at 1.72 eV (720 nm), 2.16 eV (570 nm), 2.81 eV (440 nm), 3.01 eV (410 nm), 3.36 eV (365 nm), 3.70 eV (335 nm) and 4.0 eV (310 nm), respectively. The absorption spectra of the PWO crystal containing VO2+ occur two peaks located at 370 nm and 420 nm. The PWO crystal containing a pair of VPb2−-VO2+ does not occur absorption band in the visible and near-ultraviolet region. This leads to the conclusions that the 370 and 420 nm absorption bands are related to the existence of both VPb2− and VO2+ in the PWO crystal and the other absorption bands are related to the existence of the VPb2− in the PWO crystal. The existence of the pair of VPb2−-VO2+ has no visible effects on the optical properties. The calculated polarized optical properties are well consistent with the experimental results.  相似文献   

12.
GaSe single crystals were N-implanted along c-axis with ion beams of 1014 and 1016 ions/cm2 doses having energy values of 60 and 100 keV. The photoluminescence (PL) spectra of undoped and N-implanted GaSe crystals were measured at different temperatures. The PL intensity was observed to decrease with increasing implantation dose while the FWHM of the exciton peaks increased. In heavily doped crystals, due to the interaction with the radiation induced disorders, the wave vector selection rules are satisfied and an indirect exciton PL band is observed 36 meV below the direct exciton states.  相似文献   

13.
In this work, we report the experimental results on the fabrication and optical characterization of Czochralski (Cz) grown KBr single crystals doped with CdTe crystallites. The results of the optical absorption have shown two bands, the first one located at 250 nm demonstrates the incorporation of cadmium atoms in the KBr host followed by a partial chemical decomposition of CdTe, the second band located at 585 nm shows an optical response of CdTe aggregates. Photoluminescence spectra at room temperature before annealing showed a band located at 520 nm (2.38 eV), with a blue shift from the bulk gap of 0.82 eV (Eg (CdTe)=1.56 eV). While the photoluminescence spectra after annealing at 600 °C showed a band situated at 640 nm (1.93 eV), these bands are due to band-to-band transitions of CdTe nanocrystals with a blue shift from the bulk gap at 0.38 eV. Blue shift in optical absorption and photoluminescence spectra confirm nanometric size of dopant. X-ray diffraction (XRD) spectra have shown the incorporation of CdTe aggregates in KBr.  相似文献   

14.
The extensive investigation of the annealing effect in nitrogen atmosphere on the structural optical and electrical properties of chemically deposited CdS films on SnO2 has been performed. The as-deposited film shows 2.45 eV band gap (Eg) and decreases with increasing annealing temperature. The film annealed at 623 K having pure hexagonal phase (a = 4.14 Å, c = 6.71 Å for [1 0 0] plane) and Eg = 2.36 eV shows 10 times higher conductivity for all temperature range, and shows two different activation energies Ea = 0.114 eV and Ea = 0.033 eV for the temperature range 395 K ≤ T ≤ 515 K and 515 K ≤ T ≤ 585 K, respectively. The structural parameters such as dislocation density, strain and optical parameters such as absorption and extinction coefficient are calculated and compared for all the films.  相似文献   

15.
The absorption edge of undoped Tl2Ga2S3Se crystals have been studied through transmission and reflection measurements in the wavelength range 440–1100 nm and in the temperature range 10–300 K. The absorption edge was observed to shift toward lower energy values with increasing temperature. As a result, the rate of the indirect band gap variation with temperature γ=−2.6×10−4 eV/K and the absolute zero value of the band gap energy Egi(0)=2.42 eV were obtained.  相似文献   

16.
The infrared reflection spectra of V2O5 single crystals have been measured in polarized light for Ea, Eb and Ec. By Kramers-Kronig analysis the optical constants and the values of some LO- and TO-mode frequencies were evaluated. Two unknown lattice vibrations have been ascertained.  相似文献   

17.
Detailed ab initio calculations of the structural, electronic, optical and elastic properties of two crystals - magnesite (MgCO3) and calcite (CaCO3) - are reported in the present paper. Both compounds are important natural minerals, playing an important role in the carbon dioxide cycling. The optimized crystal structures, band gaps, density of states diagrams, elastic constants, optical absorption spectra and refractive indexes dependence on the wavelength all have been calculated and compared, when available, with literature data. Both crystals are indirect band compounds, with calculated band gaps of 5.08 eV for MgCO3 and 5.023 eV for CaCO3. Both values are underestimated by approximately 1.0 eV with respect to the experimental data. Although both crystals have the same structure, substitution of Mg by Ca ions leads to certain differences, which manifest themselves in noticeable change in the electronic bands profiles and widths, shape of the calculated absorption spectra, and values of the elastic constants. Response of both crystals to the applied hydrostatic pressure was analyzed in the pressure range of phase stability, variations of the lattice parameters and characteristic interionic distances were considered. The obtained dependencies of lattice constants and calculated band gap on pressure can be used for prediction of properties of these two hosts at elevated pressures that occur in the Earth's mantle.  相似文献   

18.
Zinc selenide (ZnSe) thin films (d = 0.11-0.93 μm) were deposited onto glass substrates by the quasi-closed volume technique under vacuum. Their structural characteristics were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). The experiments showed that the films are polycrystalline and have a zinc blende (cubic) structure. The film crystallites are preferentially oriented with the (1 1 1) planes parallel to the substrate surface. AFM images showed that the films have a grain like surface morphology. The average roughness, Ra = 3.3-6.4 nm, and the root mean square roughness, Rrms = 5.4-11.9 nm, were calculated and found to depend on the film thickness and post-deposition heat treatment.The spectral dependence of the absorption coefficient was determined from transmission spectra, in the range 300-1400 nm.The values of optical bandgap were calculated from the absorption spectra, Eg = 2.6-2.7 eV.The effect of the deposition conditions and post-deposition heat treatment on the structural and optical characteristics was investigated.  相似文献   

19.
High quality cubic CdS epilayers were grown on GaAs (1 0 0) substrates by the hot-wall epitaxy method. The crystal structure of the grown epilayers was confirmed to be the cubic structure by X-ray diffraction patterns. The optical properties of the epilayers were investigated in a wide photon energy range between 2.0 and 8.5 eV using spectroscopic ellipsometry (SE) and were studied in the transmittance spectra at a wavelength range of 400-700 nm at room temperature. The data obtained by SE were analyzed to find the critical points of the pseudodielectric function spectra, 〈?(E)〉 = 〈?1(E)〉 + i?2(E)〉, such as E0, E1, E2, E0, and E1 structures. In addition, the optical properties related to the pseudodielectric function of CdS, such as the absorption coefficient α(E), were investigated. All the critical point structures were observed, for the first time, at 300 K by ellipsometric measurements for the cubic CdS epilayers. Also, the energy band gap was determined by the transmittance spectra of the free-standing film, and the results were compared with the E0 structure obtained by SE measurement.  相似文献   

20.
The electronic structures, dielectric functions and absorption spectra for the CaMoO4 (CMO) crystal with and without oxygen vacancy VO2+ have been calculated using the CASTEP code with the lattice structure optimized. The calculated results indicate that the optical properties of the CMO crystal show anisotropy and its optical symmetry coincides with the lattice structure geometry of the CMO crystal. The calculated absorption spectra indicate that the perfect CMO crystal does not display absorption band in the visible and near-ultraviolet range. However, in this range, the absorption spectra of the CMO crystal containing VO2+ exhibit one peak at about 1.84 eV (673 nm). It predicates that the 680 nm absorption band is related to the existence of VO2+ in the CMO crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号