首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
A series of SBA-15 supported bimetallic Rh–Ni catalysts with different weight ratio of Rh/Ni in the range of 0–0.04 were prepared for carbon dioxide reforming of methane. The doping effect of Rh on catalytic activity as well as carbon accumulation and removal over the catalysts was studied. The characterization results indicated that the addition of a small amount of Rh promoted the reducibility of Ni particles and decreased the Ni particle size. During the dry reforming reaction, the carbon deposition was originated from CH4 decomposition and CO disproportionation. The Rh–Ni catalyst with small metallic particle size inhibited the carbon formation and exhibited high efficiency in the removal of coke. In comparison with bare Ni-based catalyst, the Rh–Ni bimetallic catalysts showed high activity and stability in the dry reforming of methane.  相似文献   

2.
Nanostructured γ-Al2O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2adsorption-desorption,TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2 g-1and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and O2 to dry reforming feed increased the methane conversion and led to carbon free operation in combined processes.  相似文献   

3.
碳化镍钼催化剂的制备及其甲烷干气重整活性(英文)   总被引:1,自引:0,他引:1  
Nickel molybdenum carbide catalysts were prepared and their activities in the CO2 reforming of methane at a low CO2/CH4 reactant ratio were investigated using a microreactor at atmospheric pressure and at 973 K.The effect of the catalyst preparation method and the Ni/Mo ratio on the increase in catalyst life and the promotion of catalytic activity were investigated using N2 adsorption,X-ray diffraction, temperature-programmed carburization,temperature-programmed reaction,and a reforming reaction.The 25Ni75Mo catalyst that was carburized at 813 K exhibited the highest hydrogen formation ability and gave the least carbon deposition.The incomplete carburization of the Mo oxide species in the catalyst that was carburized at a lower temperature gradually gave a more active carburized species.The NiMoOxCy in the catalyst was more active in hydrogen formation during the dry reforming of methane whileβ-Mo2C andη-Mo3C2 were less active.  相似文献   

4.
The NiB amorphous alloy catalysts supported on CNTs and alumina were prepared by impregnation and chemical reduction. The gas-phase benzene hydrogenation was used as a probe reaction to evaluate the catalytic activity. The result showed that the NiB amorphous alloy catalyst supported on carbon nanotubes exhibited higher activity than that supported on alumina.  相似文献   

5.
An Au/ceria(0.44%, mass fraction) catalyst containing gold ions was prepared by a modified deposition precipitation method, and the evolution of gold ions in the catalyst and its influence on the catalysis of CO oxidation were investigated. It was found that the as-prepared catalyst containing gold ions with high valence could fully oxidize CO at –10 °C initially but was deactivated gradually at low temperatures during the reaction with CO or treatment by unpurified air. The deactivation of the catalyst during CO oxidation or treatment of it by unpurified air was independent and progressive at low temperatures while the activity of the catalyst at relatively high temperatures was maintained well. During the reaction with CO or treatment by unpurified air, the XPS results indicate that gold species evolved from high valence to low valence and the diffuse reflectance UV-Vis spectra show that high valence gold was reduced to charged gold clusters, gold clusters grew to small gold crystals and small gold crystals grew to large gold particles. Accordingly, the high valence gold corresponded to the activity at low temperatures and the metallic gold was active and relatively stable at high temperatures. The turnover frequencies(TOF) of the catalysts treated by different methods at 273 K decreased with the evolution of gold species from high valence to low valence, no maximum of TOF was observed although gold particles in the catalyst attained to about 2―3 nm during the treatment. An Au/ceria catalyst with a gold load of 0.87% (mass fraction) maintained a good activity for CO oxidation within 18 h at room temperature. The catalysts were characterized via transmitted electronic microscopy(TEM), inductively coupled plasma optical emission spectrometry(ICP-OES), X-ray diffraction(XRD) and BET specific surface area and UV-Vis DRS as well.  相似文献   

6.
A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia (Spinel) were used to produce syngas by methane reforming with carbon dioxide. The synthesized catalysts were characterized using BET, TPR, TPO, TPH, and H2S chemisorption techniques. The activity results showed high activity and stability for the Ru and Rh catalysts. The TPO and TPH analyses indicated that the main reason for lower activity and stability of the Pd catalyst was the formation of the less reactive deposited carbon and sintering of the catalyst.  相似文献   

7.
The effects of SO2, V2O5 loading and reaction temperature on the activity of activated carbon supported vanadium oxide catalyst have been studied for the reduction of NO with NH3 at low temperatures (150-250℃). It is found that SO2 significantly promotes the catalyst activity. Both V2O5 loading and reaction temperature are vital to the promoting effect of SO2. The catalysts with V2O5 loadings of 1 -5 weight percent have a positive effect on the promotion of SO2, while the catalysts with V2O5 loadings of above 7 weight percent have not such an effect or show a negative effect. At lower temperatures (<180℃) SO2 poisons the catalyst but at higher temperatures promotes it. The reason of the SO2 promotion was also discussed; it may results from the formation of SO42- on the catalyst surface, which increases the surface acidity and hence the catalytic activity.  相似文献   

8.
The activity and thermal stability of Pd/Al_2O_3 and Pd/(Al_2O_3 MO_x)(M=Ca,La,Ce) palladium catalysts in the reaction of complete oxidation of methane are presented in this study.The catalyst supports were prepared by sol-gel method and they were dried either conventionally or with supercritical carbon dioxide.Then they were impregnated with palladium nitrate solution.The catalysts with unmodified alumina had a high surface area.The activity and thermal stability of the alumina- supported catalyst was also very high.The introduction of calcium,lanthanum,or cerium oxide into alumina support caused a decrease of the surface area in the way dependent on the support precursor drying method.These modifiers decreased the activity of palladium catalysts,and they required higher temperatures for the complete oxidation of methane than unmodified Pd/Al_2O_3.The improvement of the palladium activity by lanthanum and cerium support modifier was observed only at low temperatures of the reaction.  相似文献   

9.
Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over CoMo catalyst have been studied. XRD results indicated that the main active phases in CNT and γ-Al2O3 supported Co-Mo catalysts are MoO2 and MoO3, respectively. The TPR results reveal that the reduction peak temperatures of the active species on CNT supported Co-Mo catalyst is lower than those on alumina supported Co-Mo catalyst, indicating that the CNT supports favor the r...  相似文献   

10.
In this paper dry reforming of methane (DRM) was carried out over nanocrystalline MgAl2O4-supported Ni catalysts with various Ni loadings. Nanocrystalline MgAl2O4 spinel with high specific surface area was synthesized by a co-precipitation method with the addition of pluronic P123 triblock copolymer as surfactant, and employed as catalyst support. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption, H2 chemisorption, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), temperature- programmed desorption (TPD) and transmission and scanning electron microscopies (TEM, SEM) techniques. The obtained results showed that the catalyst support has a nanocrystalline structure (crystal size: about 5 nm) with a high specific surface area (175 m2 g-1) and a mesoporous structure. Increasing in nickel content decreased the specific surface area and nickel dispersion. The prepared catalysts showed high catalytic activity and stability during the reaction. SEM analysis revealed that whisker type carbon deposited over the spent catalysts and increasing in nickel loading increased the amount of deposited carbon. The nickel catalyst with 7 wt% of nickel showed the highest catalytic activity.  相似文献   

11.
研究了制备参数对用于甘油蒸汽重整反应的Ni基催化剂性能的影响。采用过量浸渍法、等体积浸渍法和改进的平衡沉积过滤(EDF)法制备了一系列Al2O3负载的8 wt%Ni催化剂,运用X射线衍射(XRD)、电感耦合等离子体光谱仪、N2吸附-脱附、扫描电镜(SEM)、透射电镜和H2程序升温还原(TPR)表征了催化剂的表面和体相性质;采用CHN分析仪和SEM表征了使用后催化剂以测定其表面沉积的碳及其形貌。结果表明,制备方法对所制催化剂的织构、结构和表面性质影响很大,导致氧化铝表面Ni物种的分散和种类的不同。即使XRD和TPR结果证实形成了铝酸镍晶相,但Ni/Al-edf催化剂中β峰的贡献大于其它两个催化剂的,表明在这种情况下铝酸镍更容易还原。在550 oC以上CO2选择性增加和CO选择性不变,表明Ni/Al-wet和Ni/Al-edf催化剂可成功催化水汽变换反应。另外,650oC时Ni/Al-edf催化剂上甘油生成气相产物的转化率、氢气产率以及烯丙醇、乙醛和乙酸选择性最高,且它在所有催化剂中的积炭量也最低。将催化剂结构性质、分散度和还原性与其催化性能相关联,发现EDF法制得的催化剂比表面积和活性相分散度更高,更易被还原,因而其活性和生成H2的选择性更高,也更抗积碳。  相似文献   

12.
采用固体反应.模板剂晶化法合成出纳米介孔二氧化锆,并以其为载体通过浸渍法制备了Ni基催化剂,考察了载体性质对催化剂活性和稳定性的影响.结果表明,以四方晶相纳米二氧化锆为载体的催化剂性能更佳,并对其影响因素进行了分析.  相似文献   

13.
Methane reforming by carbon dioxide and oxygen was investigated over 5 wt.%Ni/CaO-SiO2 catalyst in a fluidized-bed reactor. The catalyst exhibited high activity and good stability at stoichiometric methane, carbon oxide and oxygen feed. Effects of calcium loading, space velocities, reaction temperatures and the feed gas compositions for this combined reaction were investigated. These results indicated that Ni/CaO-SiO2 is more effective and stable. The catalyst performance, stability, structure, dispersion of nickel and carbon deposition of the modified and unmodified catalysts were investigated by a series of characterization techniques. Results showed that catalysts modified with CaO improved their stability better than the pure nickel-based catalysts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The formation of composite nickel and nickel-platinum catalysts reinforced with steel gauze was studied. The catalysts were prepared by sintering powdered nickel metal and a supported nickel catalyst (GIAP-3 or NIAP-18) with a chromium oxide additive in the case of nickel-containing composite catalysts or by sintering powdered nickel, aluminum, and a supported platinum catalyst in the case of catalysts containing nickel-platinum. With the use of electron microscopy, mercury porosimetry, and X-ray electron probe microanalysis, it was found that a metal matrix, in the pores of which supported catalyst particles were distributed, was formed in the composite catalysts. The reinforced nickel catalysts prepared were active in the reaction of methane steam reforming, and the catalysts containing nickel-platinum were active in the reaction of hydrogen oxidation. An increase in the activity of reinforced nickel catalysts in the course of the reaction was found. It is believed that the increase of the activity was due to the reduction of nickel oxide from an inactive difficult-to-reduce oxide film containing nickel and chromium oxides under the action of the reaction atmosphere.  相似文献   

15.
镍基催化剂上积碳是甲烷干气重整反应急需解决的关键问题。实验采用TPSR、TPD、XPS和脉冲反应等方法系统研究了镍基催化剂表面积碳的形态和特点。热力学研究表明,在573 K到1273 K的温度范围内,催化剂的表面积碳是不可避免的。TPSR、XPS和TPD研究表明,甲烷在催化剂表面裂解将形成至少三种碳物种:Cα、Cβ和Cγ。这三种碳物种具有不同的表面迁移能力、热稳定性和反应活性。其中,Cα物种在甲烷干气重整反应中是一种非常活泼和重要的中间体;Cγ物种则可能是表面积碳的前驱物:部分脱氢的Cβ物种能够与H2或CO2反应生成CH4或CO。  相似文献   

16.
NiO/LaMnO3催化剂用于乙醇水蒸气重整反应   总被引:3,自引:0,他引:3  
采用柠檬酸络合-浸渍法制备了NiO/LaMnO3钙钛矿型复合氧化物催化剂并将其应用于乙醇水蒸汽重整制氢反应, 考察了NiO含量、焙烧温度对催化剂性能的影响, 采用XRD、TPR和热分析等手段对催化剂进行了表征. 结果表明, 该催化剂具有高活性、高选择性和良好的稳定性. 催化剂中的NiO含量和焙烧温度对催化性能有显著影响. 在原料气体积组成为20%(体积分数, φ) C2H5OH 和水以及80%(φ)N2, 其中水醇摩尔比为3:1, 空速为80000 mL·h-1·g-1 cat, 反应温度为400 ℃时, 15%(质量分数, w)的NiO/LaMnO3上, 乙醇转化率接近100%. 关联催化剂活性和TPR及XRD实验结果, 发现催化剂的高活性源于由催化剂前驱体中进入钙钛矿型复合氧化物晶格中的镍离子被还原所得的金属镍.  相似文献   

17.
对具有磁铅石结构的Sr1-xLaxNiAl11O19对甲烷与二氧化碳重整反应的催化活性、积炭量和稳定性进行了研究.不同还原温度下催化剂的XRD和催化活性的实验结果表明,金属镍是CH4+CO2重整反应的活性组分,金属镍含量越大,反应活性越高.反应后催化剂积炭量的分析结果说明,在相同镍含量和分散度的情况下,La3+离子对Sr2+离子调变,可以降低催化剂的表面酸性,提高催化剂的抗积炭能力.LaNiAl11O19是一种具有较好催化活性、稳定性和抗积炭性能的催化剂.  相似文献   

18.
钨基加氢脱氮催化剂载体与活性前身物的作用   总被引:1,自引:0,他引:1  
为研究载体表面化学性质和钨前物结构对钨基加氢脱氮催化剂活性的影响,以IR,XRD,程序升温硫化方法,研究了十二磷钨酸和偏钨酸铵两种不同结构的前身物在Al2O3的活性表面的分散状态。  相似文献   

19.
Recent progress on the mesoporous nickel–alumina catalysts for hydrogen production by steam reforming of liquefied natural gas (LNG) was reported in this review. A number of mesoporous nickel–alumina composite catalysts were prepared by a single-step surfactant-templating method using cationic, anionic, and non-ionic surfactant as structure-directing agents for use in hydrogen production by steam reforming of LNG. For comparison, nickel catalysts supported on mesoporous aluminas were also prepared by an impregnation method. The effect of preparation method and surfactant identity on physicochemical properties and catalytic activities of mesoporous nickel–alumina catalysts in the steam reforming of LNG was investigated. Regardless of preparation method and surfactant identity, nickel oxide species were finely dispersed on the surface of mesoporous nickel–alumina catalysts through the formation of surface nickel aluminate phase. However, nickel dispersion and nickel surface area of mesoporous nickel–alumina catalysts were strongly affected by the preparation method and surfactant identity. It was found that nickel surface area of mesoporous nickel–alumina catalyst served as one of the important factors determining the catalytic performance in hydrogen production by steam reforming of LNG. Among the catalysts tested, a mesoporous nickel–alumina composite catalyst prepared by a single-step non-ionic surfactant-templating method exhibited the best catalytic performance due to its highest nickel surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号