首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Boltzmann equation describing one-dimensional motion of a charged hard rod in a neutral hard rod gas at temperatureT = 0 is solved. Under the action of a constant and uniform field the charged particle attains a stationary state. In the long time limit the velocity autocorrelation function decays via damped oscillations. In the reference system moving with the mean particle velocity the decay of fluctuations in the position space is governed (in the hydrodynamic limit) by the diffusion equation. Both the stationary current and the diffusion coefficient are proportional to the square root of the field. It is conjectured that this result also holds forT > 0 in a strong field limit.On leave from the Institute of Theoretical Physics, University of Warsaw, Hoza 69, 00-081 Warsaw, Poland.  相似文献   

2.
A Hamiltonian formalism is applied to derive an exact solution to the equation of motion of a charged particle in the electromagnetic field of a traveling current wave. The particle motion is studied in a monochromatic magnetic field and in the traveling jump-like front of the magnetic field, and the wave mechanism for betatron acceleration is analyzed. It is shown that, in each of these situations, a charged particle can be accelerated simultaneously in both the longitudinal and transverse directions.  相似文献   

3.
The late time asymptotics of the physical solutions to the Lorentz–Dirac equation in the electromagnetic external fields of simple configurations–the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave–are found. The solutions to the Landau–Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime.  相似文献   

4.
《Physics letters. A》1986,114(5):245-249
The motion of a charged test particle in a hard rod fluid is studied within Boltzmann's kinetic theory. The external field is supposed to be uniform and constant. In the case where the host fluid particles move isotropically with a fixed speed the problem can be exactly solved. The stationary velocity distribution is derived. It is shown that the drift velocity varies linearly with the field in the weak field limit and becomes proportional to the square root of the field for strong fields.  相似文献   

5.
经典物理学指出,在电磁场中作加速运动的带电粒子将不断向外辐射能量.在晶体沟道中运动的带电粒子也不例外,晶格场可以使带电粒子的辐射能量达到很高.对于10MeV的正电子,辐射能量可达keV量级.粒子在沟道中的运动行为决定于粒子晶体的相互作用势,常用的相互作用势有Lindhard势、Moliere势和正弦平方势.由于粒子在沟道中的运动行为十分类似于震荡器中运动的自由电子,可望把沟道辐射改造为Χ射线激光或γ射线激光.从Lindhard势出发,将其展开到四次项,在经典力学框架内,粒子的运动方程可以化为含立方项的二阶非线性微分方程,并利用Jacobian椭圆函数和第一类全椭圆积分解析地表示了系统的解和粒子运动周期,导出了正电子面沟道辐射的瞬时辐射强度、平均辐射强度和最大辐射频率,指出了利用沟道辐射作为γ激光的可能性.  相似文献   

6.
正弦平方势与小振幅近似下的弯晶沟道辐射   总被引:1,自引:0,他引:1       下载免费PDF全文
在理想情况下和经典力学框架内,引入正弦平方势,把粒子在弯晶中的运动方程化为具有外力矩的摆方程。并对系统的相平面特征进行了数值分析。在小振幅近似下,把粒子运动方程化为具有硬特性的弹簧-振子系统,用Jacobian椭圆函数和椭圆积分解析地给出系统的解和粒子运动周期。讨论了弯晶沟道辐射频率、无量纲偏转角和辐射谱的一般特征。指出利用沟道辐射作为激光的可能性。以正电子在碳单晶中沟道辐射为例进行了具体计算,得到了与其他工作基本一致的结果。  相似文献   

7.
The Dirac equation is considered in a spacetime that represents a Schwarzschild metric coupled to a uniform external electromagnetic field. Due to the presence of electromagnetic field from the surroundings, the interaction with the spin-1/2 massive charged particle is considered. The equations of the spin-1/2 massive charged particle are separated into radial and angular equations by adopting the Newman–Penrose formalism. The angular equations obtained are similar to the Schwarzschild geometry. For the radial equations we manage to obtain the one dimensional Schrödinger-type wave equations with effective potentials. Finally, we study the behavior of the potentials by plotting them as a function of radial distance and expose the effect of the external parameter, charge and the frequency of the particle on them.  相似文献   

8.
The velocity distribution of a charged hard rod coupled to an external field and moving in a neutral equilibrium hard rod gas is studied on the basis of Boltzmann's equation. The exact stationary solution is found. Above a threshold value the field becomes effective in the high-velocity region slowing down the decay of the velocity distribution. The drift velocity and the mean kinetic energy are discussed as functions of the field.  相似文献   

9.
10.
A self-consistent model is proposed to study nonlinear phenomena, such as secondary resonance and hysteresis in the vertical oscillations of a charged microparticle in a radio-frequency sheath. The motion of a single microparticle in the sheath is simulated by solving Newton's equation in which various forces acting on the particle are taken into account. The particle charging and the sheath electric field are described by a self-consistent model of the collisional radio-frequency sheath dynamics. It is found that the nonlinearity is related to the particle's charge, the sheath electric field, and the external excitation force, as well as the ion drag force and neutral-gas friction on the particle.  相似文献   

11.
This article offers a new approach for analysing the dynamic behaviour of distributions of charged particles in an electromagnetic field. After discussing the limitations inherent in the Lorentz-Dirac equation for a single point particle a simple model is proposed for a charged continuum interacting self-consistently with the Maxwell field in vacuo. The model is developed using intrinsic tensor field theory and exploits to the full the symmetry and light-cone structure of Minkowski spacetime. This permits the construction of a regular stress-energy tensor whose vanishing divergence determines a system of non-linear partial differential equations for the velocity and self-fields of accelerated charge. Within this covariant framework a particular perturbation scheme is motivated by an exact class of solutions to this system describing the evolution of a charged fluid under the combined effects of both self and external electromagnetic fields. The scheme yields an asymptotic approximation in terms of inhomogeneous linear equations for the self-consistent Maxwell field, charge current and time-like velocity field of the charged fluid and is defined as an ultra-relativistic configuration. To facilitate comparisons with existing accounts of beam dynamics an appendix translates the tensor formulation of the perturbation scheme into the language involving electric and magnetic fields observed in a laboratory (inertial) frame.  相似文献   

12.
This paper investigates the evolution of the state vector of a charged quantum particle in a harmonic oscillator driven by a time-dependent electric field. The external field randomly oscillates and its amplitude is small but it acts long enough so that we can solve the problem in the asymptotic framework corresponding to a field amplitude which tends to zero and a field duration which tends to infinity. We describe the effective evolution equation of the state vector, which reads as a stochastic partial differential equation. We explicitly describe the transition probabilities, which are characterized by a polynomial decay of the probabilities corresponding to the low-energy eigenstates, and give the exact statistical distribution of the energy of the particle.  相似文献   

13.
A method is proposed for the determination of the laws of motion of a particle in an external field. Solutions are found for the equations of motion of a charged particle in the field of an undulator, and of the Dirac-Lorentz equation in a magnetic field. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 72–75, February, 1993.  相似文献   

14.
In this paper, the trajectory and kinetic energy of a charged particle, subjected to interaction from a laser beam containing an additionally applied external static axial magnetic field, have been analyzed. We give the rigorous analytical solutions of the dynamic equations. The obtained analytical solutions have been verified by performing calculations using the derived solutions and the well known Runge-Kutta procedure for solving original dynamic equations. Both methods gave the same results. The simulation results have been obtained and presented in graphical form using the derived solutions. Apart from the laser beam, we show the results for a maser beam. The obtained analytical solutions enabled us to perform a quantitative illustration, in a graphical form of the impact of many parameters on the shape, dimensions and the motion direction along a trajectory. The kinetic energy of electrons has also been studied and the energy oscillations in time with a period equal to the one of a particle rotation have been found. We show the appearance of, so-called, stationary trajectories (hypocycloid or epicycloid) which are the projections of the real trajectory onto the (x, y) plane. Increase in laser or maser beam intensity results in the increase in particle’s trajectory dimension which was found to be proportional to the amplitude of the electric field of the electromagnetic wave. However, external magnetic field increases the results in shrinking of the trajectories. Performed studies show that not only amplitude of the electric field but also the static axial magnetic field plays a crucial role in the acceleration process of a charged particle. At the authors of this paper best knowledge, the precise analytical solutions and theoretical analysis of the trajectories and energy gains by the charged particles accelerated in the laser beam and magnetic field are lacking in up to date publications. The authors have an intention to clarify partly some important aspects connected with this process. The presented theoretical studies apply for arbitrary charged particle and the attached figures-for electrons only.  相似文献   

15.
A consistent derivation of the operator form for the solution of the wave equation for a charged particle in an arbitrary external electromagnetic field is presented. The expressions obtained can be used for solving any problems in quantum electrodynamics in external fields in the framework of the semiclassical operator method. The peculiarities of the application of this method are demonstrated for the small-angle elastic scattering of a high-energy photon in an arbitrary localized electric field. The problem is solved for the first time without presuming the central symmetry of the external field potential.  相似文献   

16.
A solution of the equation of motion of a charged particle in an external electromagnetic field comprising a superposition of a uniform static magnetic field and the field of a monochromatic, elliptically polarized electromagnetic plane wave is obtained as the solution of a Cauchy problem. The resonance case is investigated. An analysis of the resulting solution is given. Zh. Tekh. Fiz. 69, 106–110 (May 1999)  相似文献   

17.
We address the old question of whether or not a uniformly accelerated charged particle radiates, and consequently, if weak equivalence principle is violated by electrodynamics. We show that radiation has different meanings; some absolute, some relative. Detecting photons or electromagnetic waves is not absolute, it depends both on the electromagnetic field and on the state of motion of the antenna. An antenna used by a Rindler observer does not detect any radiation from a uniformly accelerated co-moving charged particle. Therefore, a Rindler observer cannot decide whether or not he is in an accelerated lab or in a gravitational field. We also discuss the general case.  相似文献   

18.
19.
A charged particle is considered in a complex external electromagnetic field. The field is a superposition of an Aharonov–Bohm field and some additional field. Here we describe all additional fields known up to the present time that allow exact solution of the Schr?dinger equation in a complex field.  相似文献   

20.
The causal Green function or Feynman propagator for the free-field Klein-Gordon equation and related singular functions, defined as distributions, are related to the causal time-boundary data. Probability densities and amplitudes are defined in terms of the solutions of the Klein-Gordon equation for a complex scalar field interacting with an electromagnetic field. The convergence of the perturbation expansion of the solution of the Klein-Gordon equation for a charged scalar particle in an external field is shown for well-behaved electromagnetic potentials. Other relativistic wave equations are discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号