共查询到20条相似文献,搜索用时 109 毫秒
1.
提出了一种新的红外弱小目标检测方法,在对红外图像进行背景预测的基础上,对残差图像采用小波变换方法增加对弱小目标的检测率,有效地提高了检测算法对低信噪比红外图像中弱小目标的检测性能。通过实测的星图数据与传统方法进行了对比和分析,证明了该方法适用于非平稳背景中低信噪比目标的检测。 相似文献
2.
3.
基于多小波变换的红外目标探测与识别 总被引:3,自引:3,他引:0
针对光电联合变换相关器目标识别的实际应用,对待测红外目标图片进行多小波变换,并利用模极大值法提取其边缘.通过获取更多的轮廓信息,从而提高对目标的识别能力.计算机模拟了常用于红外目标处理的多小波GHM和SA4,实验结果表明:基于GHM多小波提取的边缘能获取大量的图像轮廓信息,其识别结果明显优于SA4多小波.将目标原图的光学相关探测结果与基于GHM多小波提取的边缘图像光学相关探测结果进行比较发现,经多小波预处理后的边缘图像能有效增强相关峰强度. 相似文献
4.
5.
红外背景抑制与弱小目标的检测算法 总被引:9,自引:1,他引:9
强噪声背景下红外图像中弱小目标的检测一直是研究的重点和难点。根据弱小目标、背景干扰和噪声在红外图像中的差异,研究了三种低信噪比条件下红外图像中弱小目标的检测算法:小波变换、数学形态学、Top—hat算子,分别给出了处理的图像和相应的数据。仿真实验表明:这三种检测算法能十分有效地提高信噪比、增强目标、抑制背景杂波和去除噪声干扰,对信噪比约为2的弱小目标检测能得到很好的结果。三种算法所得结果一致,而且处理速度快,适合于实时图像处理和目标探测。 相似文献
6.
针对红外与可见光图像特点,提出一种基于小波包变换的融合算法。该算法先对源图像进行小波包分解,得到低频分量和各带通方向子带分量,并对不同分量采用不同的融合规则进行融合处理,得到各融合系数,然后经小波包重构获得融合图像。该方法可提取源图像细节信息,取得较好的融合效果。 相似文献
7.
8.
研究了复杂背景下红外小目标图像的去噪问题,鉴于小波阈值法去噪的缺点,结合小波变换的去相关性和能量紧支性,提出一种新的去噪方法。考虑到实际中的复杂背景和大量干扰,弱小目标通常占有很少像素,首先对红外小目标图像进行二级小波变换,然后根据新的算法对变换所得小波细节系数进行邻域运算,最后通过小波逆变换得到处理后的图像。 实验中采用Db3小波基函数,分别对两帧低信噪比原始图像进行仿真。仿真结果表明,该算法能很好地保存小目标的形状特征,抑制背景,达到较好的去噪效果。 相似文献
9.
针对远距离复杂背景下红外小目标检测问题,本文提出了一种基于小波高频距离像的方法。该方法首先将处理空间变换到小波域,通过分析残留背景、目标和噪声系数在高频子带的差异,定义基于邻域均值的子带系数表达形式,构造高频子带系数的中心向量,对小波高频图像进行综合形成距离像,得到红外复杂背景的抑制结果。在此基础上,利用恒虚警率算法将单帧背景抑制图像分割成候选目标、残留背景和噪声像素点。最后,在时间域基于目标运动的相关性,利用管道滤波实现红外小目标的最终检测。仿真实验结果表明,相对于经典算法,本文方法可以实现对红外复杂背景的有效抑制,增强目标信号的强度,准确稳定的从红外复杂背景中检测出小目标。 相似文献
10.
研究了复杂背景下红外小目标图像的去噪问题,鉴于小波阈值法去噪的缺点,结合小波变换的去相关性和能量紧支性,提出一种新的去噪方法。考虑到实际中的复杂背景和大量干扰,弱小目标通常占有很少像素,首先对红外小目标图像进行二级小波变换,然后根据新的算法对变换所得小波细节系数进行邻域运算,最后通过小波逆变换得到处理后的图像。 实验中采用Db3小波基函数,分别对两帧低信噪比原始图像进行仿真。仿真结果表明,该算法能很好地保存小目标的形状特征,抑制背景,达到较好的去噪效果。 相似文献
11.
Infrared Small Target Detection Using PPCA 总被引:1,自引:0,他引:1
Yuan Cao Rui Ming Liu Jie Yang 《International Journal of Infrared and Millimeter Waves》2008,29(4):385-395
Probabilistic PCA (PPCA) is an extension of PCA which reformulated PCA in a probabilistic framework. In this paper we propose a infrared small target detection algorithm using PPCA analogous to the face detection scheme using PCA, or known as “eigenface”. By computing the parameters of PPCA, we map the input vector from the image onto a subspace. After reconstructing the vector, the distance between the original vector and the reconstructed one will indicate the possibility of the input being a target. Experimental results show the effectiveness of this algorithm compared with other methods. 相似文献
12.
13.
14.
为解决结构化背景的抑制,利用对偶树复小波良好的方向选择性、平移不变性和可精确重构的特点,提出了一种基于对偶树复小波变换的红外弱小目标背景抑制方法.首先利用对偶树复小波变换对图像进行分解提取多尺度细节特征,然后采用最大中值滤波对各分解层的小波系数进行非线性地调整来改变目标特征的强度,重构获得估计的背景图像,最终从原图中减去所估计的背景图像实现背景抑制.基于真实的红外图像序列进行实验.结果表明:与二维最小均方误差法相比,该方法从主观视觉和数值指标都具有良好的抑制效果. 相似文献
15.
一种基于小波变换的红外图像放大算法 总被引:1,自引:1,他引:1
图像放大技术的关键在于使放大后的图像尽可能地保持原始图像的清晰度。对于红外图像而言,传统的内插法存在着一定的缺陷。提出了一种基于小波变换的图像放大新算法,该算法对原始图像先进行小波变换获得高频系数,然后运用牛顿插值算法放大高频系数,以此作为放大图像的高频成份,而将原始图像作为低频成份,最后进行小波逆变换,重构出放大图像。实验证明该方法在图像细节方面具有很好的放大效果。 相似文献
16.
17.
小波变换在近红外光谱分析中的应用进展 总被引:13,自引:1,他引:13
小波变换(WT)具有很好的时频分离特征,信息处理能力强,已广泛用于分析化学领域;本文就小波变换在近红外光谱领域的应用进行简述。小波变换用于近红外预处理,提取有用信息,消除背景干扰,可以提高近红外的分析精度和模型稳健性;用于数据压缩可以减少数据库存储空间,提高建模速度;小波系数用于模型传递,具有传递速度快,稳健性强,所需标样少等特点;小波变换可以与神经网络、遗传算法等结合,在近红外分析领域呈现出良好的发展前景。 相似文献
18.
基于改进的剪切波变换和引导滤波的红外弱小目标背景抑制方法 总被引:1,自引:0,他引:1
由于传统的背景抑制方法没有充分利用信号的方向信息,使其不能有效区分背景边缘和红外弱小目标,从而造成背景抑制结果中有较多的背景泄露.针对上述问题,本文利用改进的剪切波变换和引导滤波,提出了一种新的背景抑制方法.首先,采用改进的剪切波变换对红外弱小目标图像进行多尺度和多方向分解,将图像分解得到不同的高频子带系数和低频子带系数;其次,利用目标信号与边缘在方向上的差异,采用自适应引导滤波对高频子带系数进行处理;再次,对分解后的低频子带系数和处理后的高频子带系数进行改进的剪切波逆变换,得到预测的背景图像;最后,将原图像与背景预测图像相减获得背景抑制且目标增强的红外图像.为了验证本文方法的有效性,采用多组实验对其进行验证,并与经典的Max-Median、TDLMS和Top-hat等方法作比较.多组实验结果均表明本文方法在主观视觉和客观评价指标方面均优于其它三种经典方法,可有效提高红外搜索跟踪系统对红外弱小目标的探测概率. 相似文献
19.
20.
针对复杂云背景下的弱小目标探测,提出了一种基于光流估计和自适应背景抑制相结合的弱小目标检测算法.首先根据红外图像中云的移动规律,对云背景下的红外图像进行光流分析,提取运动云区.在光流场的计算中结合了云运动的特点以及光流方程的两个约束条件,对传统的基于梯度的光流法予以改进.同时发现移动云区对目标探测的影响较大,为了抑制移动云区对弱小目标的干扰,提出了自适应抑制复杂背景的算法,在光流场分析提取的移动云区中,利用代表背景复杂程度的背景因子,自适应调整分割阈值,抑制复杂背景的干扰.这样只在容易引起虚警的移动云区进行背景抑制处理,简化了计算量,降低了云区对弱小目标的干扰,减少了虚警和误判.实验结果表明该算法可以显著减少云区造成的虚警,并且能够探测出弱小目标. 相似文献