首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
On the Global Geometric Structure of the Dynamics of the Elastic Pendulum   总被引:1,自引:0,他引:1  
We approach the planar elastic pendulum as a singular perturbation of the pendulum to show that its dynamics are governed by global two-dimensional invariant manifolds of motion. One of the manifolds is nonlinear and carries purely slow periodic oscillations. The other one, on the other hand, is linear and carries purely fast radial oscillations. For sufficiently small coupling between the angular and radial degrees of freedom, both manifolds are global and orbitally stable up to energy levels exceeding that of the unstable equilibrium of the system. For fixed value of coupling, the fast invariant manifold bifurcates transversely to create unstable radial oscillations exhibiting energy transfer. Poincaré sections of iso-energetic manifolds reveal that only motions on and near a separatrix emanating from the unstable region of the fast invariant manifold exhibit energy transfer.  相似文献   

2.
It is shown that the flexible spherical pendulum undergoes purely slow motions with master and slaved components. The family of slow motions is realized as a three-dimensional invariant manifold in phase space. This manifold is computed analytically by applying the method of geometric singular perturbations. This manifold is nonlinear and for all energy and angular momentum levels is characterized precisely by three PO (proper orthogonal) modes. Its submanifold of zero angular momentum is a two-dimensional invariant manifold; it is the geometric realization of a nonclassical nonlinear normal mode. This normal mode is characterized precisely by two PO modes. The slaved slow dynamics are characterized precisely by a single PO mode. The stability of the slow invariant manifold as well as interactions between fast and slow dynamics are considered.  相似文献   

3.
The dynamics of a non-linear electro-magneto-mechanical coupled system is addressed. The non-linear behavior arises from the involved coupling quadratic non-linearities and it is explored by relying on both analytical and numerical tools. When the linear frequency of the circuit is larger than that of the mechanical oscillator, the dynamics exhibits slow and fast time scales. Therefore the mechanical oscillator forced (actuated) via harmonic voltage excitation of the electric circuit is analyzed; when the forcing frequency is close to that of the mechanical oscillator, the long term damped dynamics evolves in a purely slow timescale with no interaction with the fast time scale. We show this by assuming the existence of a slow invariant manifold (SIM), computing it analytically, and verifying its existence via numerical experiments on both full- and reduced-order systems. In specific regions of the space of forcing parameters, the SIM is a complicated geometric object as it undergoes folding giving rise to hysteresis mechanisms which create a pronounced non-linear resonance phenomenon. Eventually, the roles played by the electro-magnetic and mechanical components in the resulting complex response, encompassing bifurcations as well as possible transitions from regular to chaotic motion, are highlighted by means of Poincaré sections.  相似文献   

4.
Multi-scale dynamics of two coupled oscillators, the linear one with varying mass and a non-smooth light system is studied. The light system, namely nonlinear energy sink (NES) is implemented for passively controlling the linear system against external impulses and/or forces. Obtained invariant manifold of the system at fast time scale let us explain the system behavior during its transient and steady-state regime while predicted dynamics of the system at slow time scale let us detect the positions of fixed and fold singularities by explanation of its behavior.  相似文献   

5.
Non-linear systems are here tackled in a manner directly inherited from linear ones, that is, by using proper normal modes of motion. These are defined in terms of invariant manifolds in the system's phase space, on which the uncoupled system dynamics can be studied. Two different methodologies which were previously developed to derive the non-linear normal modes of continuous systems — one based on a purely continuous approach, and one based on a discretized approach to which the theory developed for discrete systems can be applied-are simultaneously applied to the same study case-an Euler-Bernoulli beam constrained by a non-linear spring-and compared as regards accuracy and reliability. Numerical simulations of pure non-linear modal motions are performed using these approaches, and compared to simulations of equations obtained by a classical projection onto the linear modes. The invariance properties of the non-linear normal modes are demonstrated, and it is also found that, for a pure non-linear modal motion, the invariant manifold approach achieves the same accuracy as that obtained using several linear normal modes, but with significantly reduced computational cost. This is mainly due to the possibility of obtaining high-order accuracy in the dynamics by solving only one non-linear ordinary differential equation.  相似文献   

6.
A non-linear multi-mode of vibration arises from the coupling of two or more normal modes of a non-linear system under free-vibration. The ensuing motion takes place on a 2M-dimensional invariant manifold in the phase space of the system, M being the number of coupled linear modes; the manifold contains a stable equilibrium point of interest, and at that point is tangent to the 2M-dimensional eigenspace of the system linearised about that equilibrium point, which characterises the corresponding M linear modes. On this manifold, M pairs of state variables govern the dynamics of the system; that is, the system behaves like an M-degree-of-freedom oscillator. Non-linear multi-modes may therefore come about when the system exhibits non-linear coupling among generalised co-ordinates. That is the case, for instance, of internal resonance of the 1:2 or 1:3 types, for systems with quadratic or cubic non-linearities, respectively, in which a four-dimensional manifold should be determined. Evaluation of non-linear multi-modes poses huge computational challenges, which is the explanation for very limited reports on the subject in the literature so far. The authors developed a procedure to determine the non-linear multi-modes for finite-element models of plane frames, using the method of multiple scales. This paper refers to the case of quadratic non-linearities. The results obtained by the proposed technique are in good agreement with those coming out from direct integration of the equations of motion in the time domain and also with those few available in the literature.  相似文献   

7.
We analyze canard explosions in delay differential equations with a one-dimensional slow manifold. This study is applied to explore the dynamics of the van der Pol slow–fast system with delayed self-coupling. In the absence of delays, this system provides a canonical example of a canard explosion. We show that as the delay is increased a family of ‘classical’ canard explosions ends as a Bogdanov–Takens bifurcation occurs at the folds points of the S-shaped critical manifold.  相似文献   

8.
A numerical method, based on the invariant manifold approach, is presented for constructing non-linear normal modes for systems with internal resonances. In order to parameterize the non-linear normal modes of interest, multiple pairs of system state variables involved in the internal resonance are kept as ‘seeds’ for the construction of the multi-mode invariant manifold. All the remaining degrees of freedom are then constrained to these ‘seed’, or master, variables, resulting in a system of non-linear partial differential equations that govern the constraint relationships, and these are solved numerically. The computationally-intensive solution procedure uses a combination of finite difference schemes and Galerkin-based expansion approaches. It is illustrated using two examples, both of which focus on the construction of two-mode models. The first example is based on the analysis of a simple three-degree-of-freedom example system, and is used to demonstrate the approach. An invariant manifold that captures two non-linear normal modes is constructed, resulting in a reduced order model that accurately captures the system dynamics. The methodology is then applied to a larger order system, specifically, an 18-degree-of-freedom rotating beam model that features a three-to-one internal resonance between the first two flapping modes. The accuracy of the non-linear two-mode reduced order model is verified by comparing time-domain simulations of the two DOF model and the full system equations of motion.  相似文献   

9.
Multi-scale vibratory energy exchange between a main oscillator including Saint-Venant term and a cubic non-linear energy sink is studied. Analytically obtained invariant manifold of the system at a fast time scale and detected fixed points and/or fold singularities at a first slow time scale let us predict and explain different regimes that the system may face during the energy exchange process. The paper will be accompanied by some numerical results confirming our analytical predictions.  相似文献   

10.
Chaos in a pendulum with feedback control   总被引:4,自引:0,他引:4  
We study chaotic dynamics of a pendulum subjected to linear feedback control with periodic desired motions. The pendulum is assumed to be driven by a servo-motor with small inductance, so that the feedback control system reduces to a periodic perturbation of a planar Hamiltonian system. This Hamiltonian system can possess multiple saddle points with non-transverse homoclinic and/or heteroclinic orbits. Using Melnikov's method, we obtain criteria for the existence of chaos in the pendulum motion. The computation of the Melnikov functions is performed by a numerical method. Several numerical examples are given and the theoretical predictions are compared with numerical simulation results for the behavior of invariant manifolds.  相似文献   

11.
谢立敏  陈力 《力学学报》2012,44(6):1057-1065
讨论了漂浮基柔性空间机器人系统的动力学建模、运动控制算法设计以及关节、臂双重柔性振动的分级主动抑制问题. 利用系统动量、动量矩守恒关系和拉格朗日-假设模态法对系统进行动力学分析,建立系统动力学方程. 基于奇异摄动法,将系统分解为表示系统刚性运动部分的慢变子系统, 表示由柔性臂引起的系统柔性运动部分的快变子系统1和表示由柔性关节引起的系统柔性运动部分的快变子系统2. 针对慢变子系统提出一种鲁棒控制方法来补偿系统参数的不确定性和柔性关节引起的转动误差,实现系统期望运动轨迹的渐近跟踪;针对快变子系统1采用线性二次型最优控制器来抑制由柔性臂引起的系统柔性振动;针对快变子系统2设计了基于机械臂和电机转子的转角速度差值的反馈控制器来抑制由柔性关节引起的系统柔性振动. 因此,系统的总控制律为以上3个子系统控制律的综合. 最后通过仿真实验证明了所提出的混合控制方法的有效性.   相似文献   

12.
In this paper we consider the orbital dynamics of a solar sail in the Earth-Sun circular restricted three-body problem. The equations of motion of the sail are given by a set of non-linear autonomous ordinary differential equations, which are non-conservative due to the non-central nature of the force on the sail. We consider first the equilibria and linearisation of the system, then examine the non-linear system paying particular attention to its periodic solutions and invariant manifolds. Interestingly, we find there are equilibria admitting homoclinic paths where the stable and unstable invariant manifolds are identical. What is more, we find that periodic orbits about these equilibria also admit homoclinic paths; in fact the entire unstable invariant manifold winds off the periodic orbit, only to wind back onto it in the future. This unexpected result shows that periodic orbits may inherit the homoclinic nature of the point about which they are described.  相似文献   

13.
We investigate how high-frequency (HF) excitation combined with strongly non-linear elasticity may influence the effective properties for low-frequency wave propagation. The HF effects are demonstrated for linear spring-mass chains with embedded non-linear parts. The investigated mechanical systems can be viewed as a one-dimensional model of materials with non-linear inclusions. The presented analytical and numerical results show that effective material properties can be altered by establishing HF standing waves in the non-linear regions of the chain. In addition, it is demonstrated how true static displacements and forces can be created by using HF excitation with structures having asymmetric displacement-force characteristics.  相似文献   

14.
Reduced order models for the dynamics of geometrically exact planar rods are derived by projecting the nonlinear equations of motion onto a subspace spanned by a set of proper orthogonal modes. These optimal modes are identified by a proper orthogonal decomposition processing of high-resolution finite element dynamics. A three-degree-of-freedom reduced system is derived to study distinct categories of motions dominated by a single POD mode. The modal analysis of the reduced system characterizes in a unique fashion for these motions, since its linear natural frequencies are near to the natural frequencies of the full-order system. For free motions characterized by a single POD mode, the eigen-vector matrix of the derived reduced system coincides with the principal POD-directions. This property reflects the existence of a normal mode of vibration, which appears to be close to a slow invariant manifold. Its shape is captured by that of the dominant POD mode. The modal analysis of the POD-based reduced order system provides a potentially valuable tool to characterize the spatio-temporal complexity of the dynamics in order to elucidate connections between proper orthogonal modes and nonlinear normal modes of vibration.  相似文献   

15.
This work concerns the nonlinear normal modes (NNMs) of a 2 degree-of-freedom autonomous conservative spring–mass–pendulum system, a system that exhibits inertial coupling between the two generalized coordinates and quadratic (even) nonlinearities. Several general methods introduced in the literature to calculate the NNMs of conservative systems are reviewed, and then applied to the spring–mass–pendulum system. These include the invariant manifold method, the multiple scales method, the asymptotic perturbation method and the method of harmonic balance. Then, an efficient numerical methodology is developed to calculate the exact NNMs, and this method is further used to analyze and follow the bifurcations of the NNMs as a function of linear frequency ratio p and total energy h. The bifurcations in NNMs, when near 1:2 and 1:1 resonances arise in the two linear modes, is investigated by perturbation techniques and the results are compared with those predicted by the exact numerical solutions. By using the method of multiple time scales (MTS), not only the bifurcation diagrams but also the low energy global dynamics of the system is obtained. The numerical method gives reliable results for the high-energy case. These bifurcation analyses provide a significant glimpse into the complex dynamics of the system. It is shown that when the total energy is sufficiently high, varying p, the ratio of the spring and the pendulum linear frequencies, results in the system undergoing an order–chaos–order sequence. This phenomenon is also presented and discussed.  相似文献   

16.
Cubic potential and hysteresis behavior (Bouc–Wen type) of a non-linear energy sink are used to localize the vibratory energy of a linear structure. A general methodology is presented to deal with time evolutionary energy exchanges between two oscillators. Invariant manifold of the system and its stability borders are detected at fast time scale while traced equilibrium and singular points at slow time scale let us predict possible behaviors of the system during its pseudo-stationary regime(s). The paper is followed by an example that considers the Dahl model for representing the hysteresis behavior of the non-linear energy sink. All analytical developments and results are compared with those obtained by direct integration of system equations. Obtained analytical developments can be endowed for designing non-linear energy sink devices with hysteresis behavior to localize vibratory energy of main structures for the aim of passive control, energy harvesting and/or both of them.  相似文献   

17.
The present research work proposes a new systematic approach to the problem of model-reduction for nonlinear dynamical systems. The formulation of the problem is conveniently realized through a system of singular first-order quasi-linear invariance partial differential equations (PDEs), and a rather general explicit set of conditions for solvability is derived. In particular, within the class of analytic solutions, the aforementioned set of conditions guarantees the existence and uniqueness of a locally analytic solution. The solution to the above system of singular PDEs is then proven to represent the slow invariant manifold of the nonlinear dynamical system under consideration exponentially attracting all dynamic trajectories. As a result, an exact reduced-order model for the nonlinear system dynamics is obtained through the restriction of the original system dynamics on the aforementioned slow manifold. The local analyticity property of the solution’s graph that corresponds to the system’s slow manifold enables the development of a series solution method, which allows the polynomial approximation of the system dynamics on the slow manifold up to the desired degree of accuracy and can be easily implemented with the aid of a symbolic software package such as MAPLE. Finally, the proposed approach and method is evaluated through an illustrative biological reactor example.  相似文献   

18.
A linear thermoviscoelastic model for homogeneous, aging materials with memory is established. A system of integro-differential equations is obtained by using two motions (a one-dimensional motion and a shearing motion) for this model. Applying the group analysis method to the system of integro-differential equations, the admitted Lie group is determined. Using this admitted Lie group, invariant and partially invariant solutions are found. The present paper gives a first example of application of partially invariant solutions to integro-differential equations.  相似文献   

19.
Chaotic oscillations are useful in assessing the health of a structure. Hence, simple chaotic systems which can easily be realized mechanically or electro-mechanically are highly desired. We study a new piecewise linear spring-mass system. The chaotic behaviour in this system is characterized using bifurcation diagrams and the invariant parameters of the dynamics. We also show that there exists a stochastic analogue of this system, which mimics the dynamical features of its deterministic counterpart. This allows a greater flexibility in practical designs as the chaotic oscillations are obtained either deterministically or stochastically. Also, the oscillations are low dimensional, which reduces the computational resources needed for obtaining the invariant parameters of this system.  相似文献   

20.
Model reduction methods are relevant when the computation time of a full convection–diffusion–reaction simulation based on detailed chemical reaction mechanisms is too large. In this article, we consider a model reduction approach based on optimization of trajectories and its applicability to realistic combustion models. As many model reduction methods, it identifies points on a slow invariant manifold based on time scale separation in the dynamics of the reaction system. The numerical approximation of points on the manifold is achieved by solving a semi-infinite optimization problem, where the dynamics enter the problem as constraints. The proof of existence of a solution for an arbitrarily chosen dimension of the reduced model (slow manifold) is extended to the case of realistic combustion models including thermochemistry by considering the properties of proper maps. The model reduction approach is finally applied to two models based on realistic reaction mechanisms: ozone decomposition as a small test case and syngas combustion as a test case including all features of a detailed combustion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号