首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population of the lowest triplet state of thymine after near-UV irradiation has been established, on the basis of CASPT2//CASSCF quantum chemical calculations, to take place via three distinct intersystem crossing mechanisms from the initially populated singlet bright 1pipi* state. Two singlet-triplet crossings have been found along the minimum-energy path for ultrafast decay of the singlet state at 4.8 and 4.0 eV, involving the lowest 3npi* and 3pipi* states, respectively. Large spin-orbit coupling elements predict efficient intersystem crossing processes in both cases. Another mechanism involving energy transfer from the lowest 1npi* state with much larger spin-orbit coupling terms can also be proposed. The wavelength dependence measured for the triplet quantum yield of pyrimidine nucleobases is explained by the location and accessibility of the singlet-triplet crossing regions.  相似文献   

2.
A realistic dynamics simulation study is reported for the ultrafast radiationless deactivation of 9H-adenine. The simulation follows two different excitations induced by two 80 fs (fwhm) laser pulses that are different in energy: one has a photon energy of 5.0 eV, and the other has a photon energy of 4.8 eV. The simulation shows that the excited molecule decays to the electronic ground state from the (1)pipi* state in both excitations but through two different radiationless pathways: in the 5.0 eV excitation, the decay channel involves the out-of-plane vibration of the amino group, whereas in the 4.8 eV excitation, the decay strongly associates with the deformation of the pyrimidine at the C 2 atom. The lifetime of the (1) npi* state determined in the simulation study is 630 fs for the 5.0 eV excitation and 1120 fs for the 4.8 eV excitation. These are consistent with the experimental values of 750 and 1000 fs. We conclude that the experimentally observed difference in the lifetime of the (1) npi* state at various excitations results from the different radiationless deactivation pathways of the excited molecule to the electronic ground state.  相似文献   

3.
Photophysical properties have been recorded for a ruthenium(II) bis(2,2':6',2' '-terpyridine) complex bearing a single ethynylene substituent. The target compound is weakly emissive in fluid solution at room temperature, but both the emission yield and lifetime increase dramatically as the temperature is lowered. As found for the unsubstituted parent complex, the full temperature dependence indicates that the lowest-energy triplet state couples to two higher-energy triplets and to the ground state. Luminescence occurs only from the lowest-energy triplet state, but the radiative and nonradiative decay rates indicate that electron delocalization occurs at the triplet level. Comparison of the target compound with the parent complex indicates that the ethynylene group reduces the size of the electron-vibrational coupling element for nonradiative decay of the lowest-energy triplet state. Although other factors are affected by substitution, this is by far the most important feature with regard to stabilization of the triplet state.  相似文献   

4.
The DNA base adenine and four monomethylated adenines were studied in solution at room temperature by femtosecond pump-probe spectroscopy. Transient absorption at visible probe wavelengths was used to directly observe relaxation of the lowest excited singlet state (S(1) state) populated by a UV pump pulse. In H(2)O, transient absorption signals from adenine decay biexponentially with lifetimes of 0.18 +/- 0.03 ps and 8.8 +/- 1.2 ps. In contrast, signals from monomethylated adenines decay monoexponentially. The S(1) lifetimes of 1-, 3-, and 9-methyladenine are similar to one another and are all below 300 fs, while 7-methyladenine has a significantly longer lifetime (tau = 4.23 +/- 0.13 ps). On this basis, the biexponential signal of adenine is assigned to an equilibrium mixture of the 7H- and 9H-amino tautomers. Excited-state absorption (ESA) by 9-methyladenine is 50% stronger than by 7-methyladenine. Assuming that ESA by the corresponding tautomers of adenine is unchanged, we estimate the population of 7H-adenine in H(2)O at room temperature to be 22 +/- 4% (estimated standard deviation). To understand how the environment affects nonradiative decay, we performed the first solvent-dependent study of nucleobase dynamics on the ultrafast time scale. In acetonitrile, both lowest energy tautomers of adenine are present in roughly similar proportions as in water. The lifetimes of the 9-substituted adenines depend somewhat more sensitively on the solvent than those of the 7-substituted adenines. Transient signals for adenine in H(2)O and D(2)O are identical. These solvent effects strongly suggest that excited-state tautomerization is not an important nonradiative decay pathway. Instead, the data are most consistent with electronic energy relaxation due to state crossings between the optically prepared (1)pipi* state and one or more (1)npi* states and the electronic ground state. The pattern of lifetimes measured for the monomethylated adenines suggests a special role for the (1)npi* state associated with the N7 electron lone pair.  相似文献   

5.
Complete active-space self-consistent field (CASSCF) calculations with a (14,11) active space and density functional theory calculations followed by Car-Parrinello molecular dynamic simulations are reported for the p-hydroxyphenacyl acetate, diethyl phosphate, and diphenyl phosphate phototrigger compounds. These calculations considered the explicit hydrogen bonding of water molecules to the phototrigger compound and help reveal the role of water in promoting the photodeprotection and subsequent rearrangement reactions for the p-hydroxyphenacyl caged phototrigger compounds experimentally observed in the presence of appreciable amounts of water but not observed in neat nonproton solvents like acetonitrile. The 267 nm excitation of the phototrigger compounds leads to an instantaneous population of the S3(1pipi*) state Franck-Condon region, which is followed by an internal conversion deactivation route to the S1(1npi*) state via a 1pipi*/1npi* vibronic coupling. The shorter lifetime of the S1(1npi*) state (approximately 1 ps) starting from the FC geometry is terminated by a fast intersystem crossing at a 3pipi*/3npi* intersection with a structure of mixed pipi*/npi* excitation in the triplet state. The deprotection reaction is triggered by a proton (or hydrogen atom) transfer assisted by water bridges and emanates from this pipi*/npi* triplet state intersection. With the departure of the leaving group, the reaction evolves into a water-mediated post-deprotection phase where the spin inversion of pQM (X, 3A) leads to a spiroketone in the ground state by a cyclization process that is followed by an attack of water to produce a 1,1'-di-hydroxyl-spiroketone. Finally, the H atom of the hydroxyl in 1,1'-di-hydroxyl-spiroketon transfers back to the p-O atom aided by water molecules to generate the p-hydroxyphenyl-acetic acid final rearrangement product.  相似文献   

6.
The excited state dynamics of the purine base 9-methyladenine (9Me-Ade) has been investigated by time- and energy-resolved photoelectron imaging spectroscopy and mass-selected ion spectroscopy, in both vacuum and water-cluster environments. The specific probe processes used, namely a careful monitoring of time-resolved photoelectron energy distributions and of photoion fragmentation, together with the excellent temporal resolution achieved, enable us to derive additional information on the nature of the excited states (pipi*, npi*, pisigma*, triplet) involved in the electronic relaxation of adenine. The two-step pathway we propose to account for the double exponential decay observed agrees well with recent theoretical calculations. The near-UV photophysics of 9Me-Ade is dominated by the direct excitation of the pipi* ((1)L(b)) state (lifetime of 100 fs), followed by internal conversion to the npi* state (lifetime in the ps range) via conical intersection. No evidence for the involvement of a pisigma* or a triplet state was found. 9Me-Ade-(H(2)O)(n) clusters have been studied, focusing on the fragmentation of these species after the probe process. A careful analysis of the fragments allowed us to provide evidence for a double exponential decay profile for the hydrates. The very weak second component observed, however, led us to conclude that the photophysics were very different compared with the isolated base, assigned to a competition between (i) a direct one-step decay of the initially excited state (pipi* L(a) and/or L(b), stabilised by hydration) to the ground state and (ii) a modified two-step decay scheme, qualitatively comparable to that occurring in the isolated molecule.  相似文献   

7.
The mechanisms which are responsible for the radiationless deactivation of the npi* and pipi* excited singlet states of thymine have been investigated with multireference ab initio methods (the complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory with respect to the CASSCF reference (CASPT2)) as well as with the CC2 (approximated singles and doubles coupled-cluster) method. The vertical excitation energies, the equilibrium geometries of the 1npi*and 1pipi* states, as well as their adiabatic excitation energies have been determined. Three conical intersections of the S1 and S0 energy surfaces have been located. The energy profiles of the excited states and the ground state have been calculated with the CASSCF method along straight-line reaction paths leading from the ground-state equilibrium geometry to the conical intersections. All three conical intersections are characterized by strongly out-of-plane distorted geometries. The lowest-energy conical intersection (CI1) arises from a crossing of the lowest 1pipi* state with the electronic ground state. It is found to be accessible in a barrierless manner from the minimum of the 1pipi* state, providing a direct and fast pathway for the quenching of the population of the lowest optically allowed excited states of thymine. This result explains the complete diffuseness of the absorption spectrum of thymine in supersonic jets. The lowest vibronic levels of the optically nearly dark 1npi* state are predicted to lie below CI1, explaining the experimental observation of a long-lived population of dark excited states in gas-phase thymine.  相似文献   

8.
The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.  相似文献   

9.
By monitoring the emission specturm, yield, and lifetime from 77 to 400°K for benzophenone in poly(chlorotrifluoroethylene), we have been able to establish the thermally activated delayed fluorescence process and have also observed a large temperature effect on the rate constant for nonradiative decay from the lowest triplet state to the ground singlet state.  相似文献   

10.
Relaxation dynamics of the excited state of bis-[4-(dimethylamino)-phenyl] methaniminium chloride (Auramine) has been investigated using subpicosecond time-resolved absorption spectroscopic technique in both aprotic and alcoholic solvents. The locally excited (LE) state, formed following photoexcitation of Auramine using 400 nm light, undergoes intramolecular charge transfer (ICT) process, which is accompanied by the twisting of the dimethylanilino groups. Time evolution of the transient absorption-stimulated emission spectra as well as the wavelength dependence of the temporal dynamics investigated in each kind of solvents suggest that the relaxation process proceeds via the formation of at least two transient states (TS I and TS II), which are geometrical conformers and consecutively formed following the decay of the LE state. Twisting of the dimethylaniline groups are nearly barrierless processes, the rates of which show linear correlation both with the macroscopic or shear viscosities as well as the solvation times of the solvents. Time-dependent and fractional viscosity dependence of the relaxation rates of the LE and the TS I states in aprotic solvents suggest the multidimensionality of the reaction coordinate as well as reveal the viscoelastic property of the solvents. However, in normal alcohols, in addition to these two factors, activation energy of the solvent viscosity may be another important factor for the slower twisting dynamics of Auramine in alcohols. To explain the viscosity dependence of the decay time of the TS II state, which undergoes an efficient internal conversion process to the ground state, the possibility of occurrence of different mechanisms, such as, energy gap law, involvement of intramolecular high frequency modes, as well as the phenyl group twisting motion on a potential energy surface having a photochemical funnel, have been discussed. TDDFT method has been applied to obtain the optimized electronic structures of the transient states but it has been possible to obtain only that for the TS II state.  相似文献   

11.
Excited state dynamics of two apo-carotenals, retinal and 12'-apo-β-carotenal, were studied by femtosecond transient absorption spectroscopy. We make use of previous knowledge gathered from studies of various carbonyl carotenoids and suggest that to consistently explain the excited-state dynamics of retinal in polar solvents, it is necessary to include an intermolecular charge transfer (ICT) state in the excited state manifold. Coupling of the ICT state to the A(g)(-) state, which occurs in polar solvents, shortens lifetime of the lowest excited state of 12'-apo-β-carotenal from 180 ps in n-hexane to 7.1 ps in methanol. Comparison with a reference molecule lacking the conjugated carbonyl group, 12'-apo-β-carotene, demonstrates the importance of the carbonyl group; no polarity-induced lifetime change is observed and 12'-apo-β-carotene decays to the ground state in 220 ps regardless of solvent polarity. For retinal, we have confirmed the well-known three-state relaxation scheme in n-hexane. Population of the B(u)(+) state decays in <100 fs to the A(g)(-) state, which is quenched in 440 fs by a low-lying nπ* state that decays with a 33 ps time constant to form the retinal triplet state. In methanol, however, the A(g)(-) state is coupled to the ICT state. This coupling prevents population of the nπ* state, which explains the absence of retinal triplet formation in polar solvents. Instead, the coupled A(g)(-)/ICT state decays in 1.6 ps to the ground state. The A(g)(-)/ICT coupling is also evidenced by stimulated emission, which is a characteristic marker of the ICT state in carbonyl carotenoids.  相似文献   

12.
The photophysical properties are reported for a series of binuclear ruthenium(II) bis(2,2':6',2"-terpyridine) complexes built around a geometrically constrained, biphenyl-based bridge. The luminescence quantum yield and lifetime increase progressively with decreasing temperature, but the derived rate constant for nonradiative decay of the lowest-energy triplet state depends on the length of a tethering strap attached at the 2,2'-positions of the biphenyl unit. Since the length of the strap determines the dihedral angle for the central C-C bond, the rate of nonradiative decay shows a pronounced dependence on angle. The minimum rate of nonradiative decay occurs when the dihedral angle is 90 degrees, but there is a maximum in the rate when the dihedral angle is about 45 degrees. This effect does not appear to be related to the extent of electron delocalization at the triplet level but can be explained in terms of variable coupling with a low-frequency vibrational mode associated with the strapped biphenyl unit.  相似文献   

13.
The electronic singlet-singlet and singlet-triplet electronic transitions of the isoalloxazine ring of the flavin core are studied using second-order perturbation theory within the framework of the CASPT2//CASSCF protocol. The main features of the absorption spectrum are computed at 3.09, 4.28, 4.69, 5.00, and 5.37 eV. The lowest singlet (S1) and triplet (T1) excited states are found to be both of pi character with a singlet-triplet splitting of 0.57 eV. On the basis of the analysis of the computed spin-orbit couplings and the potential energy hypersurfaces built for the relevant excited states, the intrinsic mechanism for photoinduced population of T1 is discussed. Upon light absorption, evolution of the lowest singlet excited state along the relaxation pathway leads ultimately to the population of the lowest triplet state, which is mediated by a singlet-triplet crossing with a state of npi* type. Subsequently a radiationless decay toward T1 through a conical intersection takes place. The intersystem crossing mechanism and the internal conversion processes documented here provide a plausible route to access the lowest triplet state, which has a key role in the photochemistry of the flavin core ring and is mainly responsible for the reactivity of the system.  相似文献   

14.
Photoinduced processes in thiouracil derivatives have lately attracted considerable attention due to their suitability for innovative biological and pharmacological applications. Here, sub-20 fs broadband transient absorption spectroscopy in the near-UV are combined with CASPT2/MM decay path calculations to unravel the excited-state decay channels of water solvated 2-thio and 2,4-dithiouracil. These molecules feature linear absorption spectra with overlapping ππ* bands, leading to parallel decay routes which we systematically track for the first time. The results reveal that different processes lead to the triplet states population, both directly from the ππ* absorbing state and via the intermediate nπ* dark state. Moreover, the 2,4-dithiouracil decay pathways is shown to be strongly correlated either to those of 2- or 4-thiouracil, depending on the sulfur atom on which the electronic transition localizes.  相似文献   

15.
5,6-Trimethylenecytosine (TMC) and 5,6-trimethyleneuracil (TMU), in which the twist of the C5-C6 bond (or the pyrimidalization of C5) is strongly hindered, do not exhibit the subpicosecond excited-state lifetime characteristic of the naturally occurring pyrimidine bases. This result demonstrates the important role the out-of-plane deformation of the six-membered ring plays in the ultrafast (subpicosecond) internal conversion of photoexcited nucleobases. The dramatically shorter fluorescence lifetime of TMU ( approximately 30 ps) relative to TMC ( approximately 1.2 ns), in aqueous solution at room temperature, is attributed to the presence in TMU of an efficient, secondary nonradiative decay channel of S(1)(pipi*) involving a low-lying (1)npi* state.  相似文献   

16.
The photophysical properties of bis-1,8-naphthalimide (NI-L-NI) dyads with different linkers ( L = -C 3H 6-, -C 4H 8-, -C 6H 12-, -C 8H 16-, and -C 9H 18-) as well as the reference NI derivative (NI-C 7H 15) were investigated in CH 3CN and H 2O/CH 3CN (v/v = 1:9). The normal fluorescence peak of (1)NI*-L-NI was observed at 379 nm together with a broad emission at longer wavelength both in aprotic CH 3CN and in H 2O/CH 3CN, which is assigned to an excimer, (1)(NI-L-NI)*. The excimer emission maximum was blue-shifted with increasing length of the linker. The photoinduced electron-transfer process of NI-L-NI was also investigated in both solvents by using nanosecond-laser flash photolysis. The T 1-T n absorption band for (3)NI*-L-NI was observed around 470 nm in both solvents. In H 2O/CH 3CN, NI-L-NI is solvated with H 2O in the ground state to exist as solvated NI-L-NI. In the excited triplet state, the NI radical anion (NI (*-)) was generated via the intramolecular quenching of (3)NI*-L-NI by another NI moiety. The solvated NI (*-)-L-NI may undergo the proton abstraction process to give NI(H) (*)-L-NI, which can be confirmed by the transient absorption band at 410 nm. This band was not observed in pure aprotic CH 3CN.  相似文献   

17.
The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field∕∕configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T(2) electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T(1)→T(3) and T(1)→T(5) transitions, supporting that the intermediate triplet state (T(2)) decays by internal conversion to T(1).  相似文献   

18.
The photophysical properties of the target compound are extremely sensitive to changes in solvent polarity since the lowest-energy excited states possess considerable charge-transfer character. Excitation results in a greatly increased dipole moment, with the resultant excited singlet state retaining a lifetime of ca. 1 ns in all solvents. Radiative decay involves coupling between the lowest-energy excited singlet state and both the ground state and an upper excited singlet state. The level of coupling to the upper singlet decreases in non-polar solvents, presumably due to symmetry factors. The radiative rate constant decreases smoothly with increasing solvent polarity function as the molecule acquires an ever increasing dipolar character. Non-radiative decay includes both intersystem crossing and internal conversion, but the former process dominates in polar solvents. The excited singlet state lifetime is very weakly dependent upon temperature in the solid state. However, in polar solutions where the Stokes' shift decreases with decreasing temperature, there is clear evidence for an activated process. This is believed to involve coupling to the upper-lying singlet excited state.  相似文献   

19.
The experimental ultrafast photophysics of thioxanthone in several aprotic organic solvents at room temperature is presented, measured using femtosecond transient absorption together with high‐level ab initio CASPT2 calculations of the singlet‐ and triplet‐state manifolds in the gas phase, including computed state minima and conical intersections, transition energies, oscillator strengths, and spin–orbit coupling terms. The initially populated singlet ππ* state is shown to decay through internal conversion and intersystem crossing processes via intermediate nπ* singlet and triplet states, respectively. Two easily accessible conical intersections explain the favorable internal conversion rates and low fluorescence quantum yields in nonpolar media. The presence of a singlet–triplet crossing near the singlet ππ* minimum and the large spin–orbit coupling terms also rationalize the high intersystem crossing rates. A phenomenological kinetic scheme is proposed that accounts for the decrease in internal conversion and intersystem crossing (i.e. the very large experimental crescendo of the fluorescence quantum yield) with the increase of solvent polarity.  相似文献   

20.
The authors report time resolved photoelectron spectra of the (1)B(2)((1)Sigma(u) (+)) state of CS(2) at pump wavelengths in the region of 200 nm. In contrast to previous studies, the authors find that the predissociation dynamics is not well described by a single exponential decay. Biexponential modeling of the authors' data reveals a rapid decay pathway (tau<50 fs), in addition to a longer lived channel (tau approximately 350-650 fs) that displays a marked change in apparent lifetime when the polarization of the pump laser is rotated with respect to that of the probe. Since the initially populated (1)B(2)((1)Sigma(u) (+)) state may decay to form either S((1)D) or S((3)P) products (the latter produced via a spin-orbit induced crossing from a singlet to a triplet electronic surface), this lifetime observation may be rationalized in terms of changes in the relative ionization cross section of these singlet and triplet states of CS(2) as a function of laser polarization geometry. The experimentally observed lifetime of the longer lived channel is therefore a superposition of these two pathways, both of which decay on very similar time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号