首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a novel method for the immobilization of Tris-(8-hydroxyquinoline) aluminum (Alq3) onto poly(4-vinylpyridine) (P4VP) thin polymer films by UV irradiation cross-linking. The polymer films were prepared by spin-coating of P4VP onto cleaned silicon wafer surface followed by UV irradiation. The thicknesses of the polymer thin films were measured by ellipsometry with different irradiation times. The immobilization of Alq3, orientation and the surface activity were followed using photoluminescence and UV-visible spectroscopy. The surface morphology was investigated by using field emission scanning electron microscopy and atomic force microscopy. Patterning of Alq3 on P4VP film was obtained using photolithography technique. Our experimental results show that the cross-linked P4VP thin film is a universal surface modifier.  相似文献   

2.
In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.  相似文献   

3.
Streaming current measurements were performed on poly(N-isopropylacrylamid-co-carboxyacrylamid) (PNiPAAM-co-carboxyAAM) soft thin films over a broad range of pH and salt concentration (pH 2.5-10, 0.1-10 mM KCl) at a constant temperature of 22 °C. The films are negatively charged because of the ionization of the carboxylic acid groups in the repeat unit of the copolymer. For a given salt concentration, the absolute value of the streaming current exhibits an unconventional, nonmonotonous dependence on pH with the presence of a maximum at pH ~6.4. This maximum is most pronounced at low electrolyte concentration and gradually disappears with increasing salinity. Complementary ellipsometry data further reveal that the average film thickness increases by a factor of ~2.2 with increasing pH over the whole range of salt concentration examined. The larger the solution salt concentration, the lower the pH value where expansion of the hydrogel layer starts to take place. The dependence of film thickness on pH and electrolyte concentration remarkably follows that obtained for surface conductivity. The streaming current and surface conductivity results could be consistently interpreted on a quantitative basis using the theory we previously derived for the electrokinetics of charged diffuse (heterogeneous) soft thin films complemented here by the derivation of a general expression for the surface conductivity of such systems. In particular, the maximum in streaming current versus pH is unambiguously attributed to the presence of an interphasial gradient in polymer segment density following the heterogeneous expansion of the chains within the film upon swelling with increasing pH. A quantitative inspection of the data further suggests that pK values of ionogenic groups in the film as derived from the streaming current and surface conductivity data differ by ~0.9 pH unit. Such a difference is attributed to the impact of position-dependent hydrophobicity across the film on the degree of ionization of carboxylic sites.  相似文献   

4.
We have investigated the effects of film composition and thickness on the rate of pH-induced response of a copolymer film containing predominately polymethylene with randomly distributed carboxylic acid side groups (denoted as PM-CO2H). These responsive films are prepared directly onto a gold electrode surface by surface-catalyzed polymerization and subsequent hydrolysis. We measured electrochemical impedance at fixed frequency (100 Hz) to monitor the barrier properties of the polymer film during a step change in pH. At a 1-3% molar acid content, the copolymer films exhibit a 2 order of magnitude change in impedance at 100 Hz when the contacting solution pH changes from 11 to 4 (or 4 to 11). For all films, the rate of protonation is slower than that of ionization, consistent with a more gradual transfer of protons through an increasingly hydrophobic film at the outermost nanometers during the protonation step. Increased acid content within the film accelerates both the rate of protonation and ionization. Thinner films (50 nm) with the same acid content show faster response rate in both directions, since water and ions have a shorter transfer path. A large and reversible pH response was obtained for all films studied, but selection of appropriate film composition and thickness can greatly influence the rate of response.  相似文献   

5.
The phenomenon of contact angle hysteresis was studied on smooth films of polyimide, a polymer type used in the microelectronic industry, by dynamic cycling contact angle measurements based on axisymmetric drop shape analysis-profile in combination with variable angle spectroscopic ellipsometry (VASE). It was found that both advancing and receding contact angles became smaller with increasing the number of cycles and are, therefore, not a property of the dry solid alone. The changes of the wetting behavior during these dynamic cycling contact angle measurements are attributed mainly to swelling and/or liquid retention. To reveal the water-induced changes of the polymer film, the polyimide surface was studied before and after the contact with a water droplet by VASE. Both the experimental ellipsometric spectrum for Delta and that for Psi as well as the corresponding simulations show characteristic shifts due to the contact with water. The so-called effective medium approximation was applied to recover information about the thickness and effective optical constants of the polymer layer from the ellipsometrically measured values of Delta and Psi. On the basis of these results, the swelling and retention behavior of the polyimide films in contact with water droplets were discussed.  相似文献   

6.
Multilayer thin films were prepared by the layer-by-layer (LBL) deposition method using a rhenium-containing hyperbranched polymer and poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (PTEBS). The radii of gyration of the hyperbranched polymer in solutions with different salt concentrations were measured by laser light scattering. A significant decrease in molecular size was observed when sodium trifluoromethanesulfonate was used as the electrolyte. The conditions of preparing the multilayer thin films by LBL deposition were studied. The growth of the multilayer films was monitored by absorption spectroscopy and spectroscopic ellipsometry, and the surface morphologies of the resulting films were studied by atomic force microscopy. When the pH of a PTEBS solution was kept at 6 and in the presence of salt, polymer films with maximum thickness were obtained. The multilayer films were also fabricated into photovoltaic cells and their photocurrent responses were measured upon irradiation with simulated air mass (AM) 1.5 solar light. The open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of the devices were 1.2 V, 27.1 mu A cm(-2), 0.19, and 6.1x10(-3) %, respectively. The high open-circuit voltage was attributed to the difference in the HOMO level of the PTEBS donor and the LUMO level of the hyperbranched polymer acceptor. A plot of incident photon-to-electron conversion efficiency versus wavelength also suggests that the PTEBS/hyperbranched polymer junction is involved in the photosensitization process, in which a maximum was observed at approximately 420 nm. The relatively high capacitance, determined from the measured photocurrent rise and decay profiles, can be attributed to the presence of large counter anions in the polymer film.  相似文献   

7.
An ellipsometric technique is described for accurately measuring the film thickness of plasma-polymerized polymers on metallic substrates. The index of refraction n and absorption index Kof the plasma polymer film can also be studied by ellipsometry. Films of plasma polystyrene and polyepichlorohydrin were deposited on evaporated aluminum substrates and their thickness and optical constants determined. Plasma polystyrene films from 20 to 1600 Å thick have optical constants n = 1.63 and K =0 independent of film thickness. Plasma polyepichlorohydrin films over the same range of thickness give n ? 1.70 and K? 0.01. By utilizing the ellipsometric method the effect of plasma polymer film thickness on surface energy properties was determined. Advancing contact angle measurements and surface energy analysis detail the polar γSVP dispersion γSVPcontributions to the solid-vapor surface tension γSV = γSVd + γSVP Polystyrene and polyepichlorohydrin films on etched aluminum. For thin plasma polystyrene films (600 Å), anomalies in the calculated surface energy are discussed and related to possible surface nonuniformity caused by film growth. Thicker films of plasma polystyrene are shown to have normal surface energy properties as does plasma poly-epichlorohydrin over the entire range of film thickness measured. The adhesive and cohesive properties of plasma polystyrene and polyepichlorohydrin films are discussed as estimated from a lap-shear bond strength study. Etched aluminum coated with various thicknesses of these two polymers and bonded with an epoxy-phenolic adhesive shows a decreasing shear strength with increasing plasma film thickness but begins to level off at ~1600 psi for films >1600 Å thick.  相似文献   

8.
9.
Hydrogen-bonding-directed layer-by-layer assembled films, based on polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer micelles and poly(4-vinylpyridine) (P4VP), were successfully fabricated in methanol. Varying the PAA content in the PS-b-PAA micelles afforded control over the film growth properties, especially the multilayer film thickness. Interestingly, antireflection films with refractive indices that could be tuned between 1.58 and 1.28 were obtained by treatment with an aqueous HCl solution (pH 2.27), and the transmittance obtained was as high as 98.4%. In acid solution, the pyridine group was protonated, destroying the hydrogen bonding between P4VP and PAA. A concomitant pH-induced polymer reorganization in the multilayers resulted in a porous honeycomb-like texture on the substrate.  相似文献   

10.
We report fabrication of thin (100~300 nm) poly(phenylene oxide) (PPO) films and their composites with poly (styrene) (PS) and silver (Ag) nanoparticles using a one‐step electron beam‐assisted vapor phase co‐deposition technique. Surface morphology and the structure of the deposited polymer thin film composites were characterized by FTIR, Raman, X‐ray spectroscopy, and contact angle measurements. As‐deposited PPO films and PPO/Ag composites were of porous nature and contrary to solvent casting techniques were free from nodular growth. In the case of PPO/PS thin film polymer composites, however, film morphology displayed nodular growth of PPO with nodule diameters of about ~200 nm and height of approximately 50 nm. Unique morphological changes on the porous PPO thin film surface were noticed at different Ag filling ratios. Further, the capacitance of PPO/Ag composites (<16 wt%) were measured under radio‐frequency conditions and they were functional up to 100 MHz with an average capacitance density of about 2 nF/cm2. The fabricated PPO‐based composite systems are discussed for their potential applications including embedded capacitor technology. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Carboxymethyl cellulose (CMC), in solution and adsorbed on the surface of talc, has been studied with ATR FTIR spectroscopy as a function of the solution pH. The solution spectra enable the calculation of the extent of ionization of the polymer (due to protonation and deprotonation of the carboxyl group) at various pH values, yielding a value of 3.50 for the pK(app)(1/2) (pH at which half of all carboxyl groups are ionized) in a simple electrolyte solution and a value of 3.37 for the pK(app)(1/2) in solutions containing magnesium ions (3.33 x 10(-4) M). The spectra of the adsorbed layer reveal that CMC interacts with the talc surface through a chemical complexation mechanism, via the carboxyl groups substituted on the polymer backbone. The binding mechanism is active at all pH values down to pH 2 and up to pH 11. The adsorbed layer spectra reveal that protonation and deprotonation of the polymer are affected by adsorption, with an increase in the pK(app)(1/2) to a value of 4.80. Spectra of the adsorbed polymer were also acquired as a function of the adsorption time. Adsorption kinetic data reveal that the polymer most likely has two different interactions with the talc surface, with a stronger interaction with the talc edge through chemical complexation and a weaker interaction with the talc basal plane presumably through the hydrophobic interaction.  相似文献   

12.
Multilayered photocurrent generating thin films were fabricated by templated noncovalent assembly via stepwise assembly of molecular components. Each of films I-IV contained an underlying self-assembled monolayer (SAM) consisting of an alkanethiol linked covalently to a 2,6-dicarboxypyridine ligand that served as a binding site for attaching additional molecular components. The SAM subsequently was functionalized by sequential deposition of Cu(II), Co(II), or Fe(III) ions followed by a variety of substituted 2,6-dicarboxypyridine ligands as a means to incorporate one or more layers of pyrene chromophores into the film. The films were characterized by contact angle measurements, ellipsometry, grazing incidence IR, cyclic voltammetry, and impedance spectroscopy after deposition of each layer, confirming the formation of ordered, stable layers. Following incorporation into a three-electrode system, photoexcitation resulted in the generation of a cathodic photocurrent in the presence of methyl viologen and an anodic photocurrent in the presence of triethanolamine. Using this strategy, systems were fabricated that produced up to 89 nA/cm(2) of reproducible photocurrent.  相似文献   

13.
A new method is presented for developing patterned, thin nanocomposite films by introducing cellulose nanowhiskers during the pulsed plasma polymerization of maleic anhydride. Metastable film structures develop as a combination of dewetting and buckling phenomena. By controlling the maleic anhydride monomer to cellulose nanowhisker weight ratio, the whiskers can be incorporated into a homogeneously covering patterned polymer film. Excess nanowhiskers are required to prevent complete dewetting and deposit dimensionally stable films. The formation of anchoring points is assumed to stabilize the film through a "pinning" effect to the substrate. The latter control the in-plane film stresses, similar to the effects of surface inhomogeneities such as artificial scratches. The different morphologies are evaluated by optical microscopy, AFM, contact angle measurements, and ellipsometry. Further analysis by infrared spectroscopy and XPS suggests esterification between the maleic anhydride and cellulose moieties.  相似文献   

14.
Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both ‘soft’ and solid thin films. ‘Soft’ polymer thin films of polystyrene and poly(styrene–ethylene/butylene–styrene) block copolymer were prepared by spin‐coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two‐layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80–130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The optical properties of pentacene (PEN) and perfluoropentacene (PFP) thin films on various SiO(2) substrates were studied using variable angle spectroscopic ellipsometry. Structural characterization was performed using x-ray reflectivity and atomic force microscopy. A uniaxial model with the optic axis normal to the sample surface was used to analyze the ellipsometry data. A strong optical anisotropy was observed, and enabled the direction of the transition dipole of the absorption bands to be determined. Furthermore, comparison of the optical constants of PEN and PFP thin films with the absorption spectra of the monomers in solution shows significant changes due to the crystalline environment. Relative to the monomer spectrum, the highest occupied molecular orbital to lowest unoccupied molecular orbital transition observed in PEN (PFP) thin film is reduced by 210 meV (280 meV). A second absorption band in the PFP thin film shows a slight blueshift (40 meV) compared to the spectrum of the monomer with its transition dipole perpendicular to that of the first absorption band.  相似文献   

16.
We demonstrate how to tailor the spatial distribution of gold nanoparticles (Au-NPs) of different sizes within polystyrene (PS) thin, supported, film hosts, thereby enabling the connection between the spatial distribution of Au-NPs within the polymer film and the optical properties to be determined. The real, n, and imaginary parts, k, of the complex refractive indices N = n(λ)+ik(λ) of the nanocomposite films were measured as a function of wavelength, λ, using multivariable angle spectroscopic ellipsometry. The surface plasmon response of films containing nearly homogeneous Au-NP distributions were well described by predictions based on classical Mie theory and the Drude model. The optical spectra of samples containing inhomogeneous nanoparticle distributions manifest features associated with differences in the size and interparticle spacings as well as the proximity and organization of nanoparticles at the substrate and free surface.  相似文献   

17.
18.
Hydrophobic films of polystyrene synthesized in bulk (PS) and by emulsion polymerization in the presence of the cationic surfactant cetyltrimethylammonium bromide (PS-CTAB) or the anionic surfactant sodium dodecyl sulfate (PS-SDS) were characterized by means of ellipsometry, contact angle measurements, and atomic force microscopy. Thin (approximately 65 nm) and thick (approximately 300 nm) films were spin-coated on hydrophilic silicon wafers. PS films presented scarcely tiny holes, while PS-CTAB and PS-SDS films presented holes and protuberances. The former were attributed to dewetting effects and the latter to surfactant clusters. The films were exposed to water or to a 0.1 mol/L NaCl solution for 24 h. Ex situ measurements evidenced strong topographic alterations after the exposure to the fluid. A model based on the diffusion of water (or electrolyte) molecules to the polymer/silcon dioxide interface through holes or defects on the film edges was proposed to explain the appearance of wrinkles and protuberances. In situ ellipsometric measurements were performed and compared with simulations, which considered either a water layer between a polymer and a silcon dioxide layer or an air layer between a polymer and water (medium). In the case of thin PS films, the ellipsometric angles evidenced a very thin (0.5-1.0 nm) air layer between water and the PS films. Upon increasing the PS film thickness, no air layer could be observed by ellipsometry. Regardless of the thickness, the ellipsometric data obtained for PS-CTAB and PS-SDS films did not indicate the presence of an air layer between them and the aqueous media. The dramatic changes in the topography of PS, PS-CTAB, and PS-SDS after immersion in salt solution were explained with proposed models. From a practical point of view, this study is particularly relevant because many hydrophobic polymers are used as substrates for biomedical purposes, where the physiological ionic strength is 0.15 mol/L NaCl.  相似文献   

19.
Streaming current, surface conductivity and swelling data of poly(acrylic acid) (PAA) and poly(ethylene imine) (PEI) thin films are analyzed on the basis of the theory for diffuse soft interfaces (J.F.L. Duval, R. Zimmermann, A. L. Cordeiro, N. Rein, C. Werner, Langmuir 25 (2009) 10691). Focus is put on ways to unravel the electroosmotic and migration contributions of the measured surface conductivity, which is crucial for appropriate electrokinetic analysis of films carrying high densities of dissociable groups. Results demonstrate that the osmotically-driven swelling of the PAA films with increasing pH is accompanied by an increase in diffuseness for the interphasial polymer segment density distribution. This heterogeneity is particularly marked at low ionic strength with a non-monotonous dependence of the streaming current on pH and the presence of a maximum at pH~6.5. The analysis of the PEI films evidences heterogeneous swelling with lowering pH, i.e. upon protonation of the amine groups. The characteristic decay length in the interphasial PEI segment density distribution is found to be nearly independent of the pH, which is in line with the moderate swelling determined by ellipsometry. A critical discussion is given on the strengths and limitations of electrokinetics/surface conductivity for quantifying the coupled electrohydrodynamic and structural properties of moderately to highly swollen polyelectrolyte thin films.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号