首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
用聚二甲基硅氧烷制备的 ,表面复制有微图形的“弹性印章”直接在聚乙烯 ,聚丙烯 ,聚苯乙烯和聚甲基丙烯酸甲酯等热塑性聚合物表面上进行热微模塑 ,无需复杂设备并可在普通实验室条件下 ,复制微图形 ,甚至在小试管外壁的曲面上或在用毛细管形成的微突起表面上也能制备出微曲面图形 .讨论了不同聚合物对生成微图形的影响 ,认为结晶性聚合物以及在温度变化时有较大收缩率的聚合物在微模塑中难以获得清晰图形 .无定形聚合物如聚苯乙烯和聚甲基丙烯酸甲酯等能够获得清晰的微结构  相似文献   

2.
机械合金化制备纳米晶和软磁性   总被引:1,自引:0,他引:1  
简述机械合金化制备纳米晶和纳米晶磁性特征,以及影响纳米晶磁性的因素。纳米晶磁性主要受尺寸因素和球磨粉末的应力影响。  相似文献   

3.
4.
用甲基丙烯酸甲酯 (MMA)作油相 ,反相胶束微乳液作为模板 ,制备了纳米氯化银 (AgCl)粒子 ,再进行原位聚合制备了纳米氯化银 /聚甲基丙烯酸甲酯 (AgCl/PMMA)复合材料 .透射电镜 (TEM )分析表明 ,纳米AgCl的尺寸为 2 0~ 80nm .扫描电镜 (SEM )测试表明纳米AgCl粒子均匀地存在于PMMA基材中 .红外分析证明 ,胶束中水和表面活性剂AOT的羰基在MMA聚合后微观环境发生变化 ,纳米粒子同聚合物之间有吸附行为 .动态力学 (DMTA)分析复合材料 ,发现纳米AgCl粒子与聚合物之间存在强烈相互作用 ,形成了中间相层 (interphaselayer) ,改变了聚合物的动态力学性能 .  相似文献   

5.
采用简单旋涂工艺制备了具有ITO/PVP/ZnO NCs/PbS NCs/PVP/Al 夹心结构的有机/无机复合电双稳存储器件,与没有PbS纳米晶修饰层的器件ITO/PVP/ZnO NCs/PVP/Al相比,PbS纳米晶的引入使目标器件的开关比提高了2个数量级。结合器件的I-V曲线和能级结构分析了PbS 纳米晶修饰层对器件阻变和载流子传输的影响。结果显示,PbS纳米晶层的加入不仅优化了器件能级结构,有利于载流子的俘获和释放,还修饰了ZnO纳米晶的表面缺陷,降低了器件载流子的复合损耗。  相似文献   

6.
在NaYF_4纳米晶表面修饰不饱和基团,与甲基丙烯酸甲酯单体共聚,制备了NaYF_4-PMMA发光纳米复合聚合物。采用共价键将纳米晶镶嵌在聚合物基质中,可实现纳米粒子均匀、稳定、高浓度的掺杂。所使用的纳米发光材料为NaYF_4∶20%Yb,2%Er和NaYF_4∶20%Yb,1.5%Tm。NaYF_4∶20%Yb,2%Er纳米晶的尺寸为9~14 nm,NaYF_4∶20%Yb,1.5%Tm纳米晶的尺寸为11~15 nm。在980 nm红外光的激发下,NaYF_4∶20%Yb,2%Er-PMMA发出明亮的黄光,NaYF_4∶20%Yb,1.5%Tm-PMMA发出明亮的蓝光,分别与其对应的发光纳米晶的发射光谱完全一致。实验结果表明:NaYF_4-PMMA材料透明性良好,稳定性高,上转换发光强度大。这种上转换发光纳米复合聚合物在显示领域,特别是在真三维显示方面具有潜在的应用前景。  相似文献   

7.
含丙磺舒高分子药物纳米微球的制备   总被引:1,自引:0,他引:1  
非甾体抗炎药丙磺舒与甲基丙烯酸 2 羟乙酯 (HEMA)反应制得含丙磺舒单体HP ,此单体在乙醇 /水体系中与甲基丙烯酸甲酯 (MMA)共聚得到含丙磺舒高分子药物纳米微球 ,聚合产物用1H NMR ,FTIR ,GPC和TEM进行了表征。结果表明HP中丙磺舒以酯键连接到甲基丙烯酸 2 羟乙酯上 ,微球由HP和MMA的共聚物构成 ,平均直径为 ( 90± 5 )nm ,含丙磺舒 4 7 4 % ,含药量较高。  相似文献   

8.
真空冷冻干燥技术结合反相微乳液法制备了纳米ZnO粉体。利用XRD、TEM及表面积分析仪对制备过程、粉体的结构、形貌、比表面积、孔容进行了表征。探讨了煅烧温度、干燥方式及真空冷冻干燥的主要参数对纳米ZnO的影响。结果表明:该方法较常规方法制备的纳米ZnO粒径小(平均19nm)、分散性好、比表面积大(567.9m2.g-1),对亚甲基蓝溶液的降解(降解率98.6%)具有较高的光催化活性。  相似文献   

9.
PS-TiO2 复合纳米微球的表征及摩擦学行为   总被引:3,自引:0,他引:3  
采用化学法合成了PS-TiO2复合纳米微球,并对其进行了TEM、FTIR、TGA及DSC等分析表征。将这种微球作用润滑油添加剂,在四球试验机上了它的减摩抗磨性能,同时又对磨斑表面进行了X射线光电子能谱分析)XPS)。研究表明:这种添加剂有良好的抗磨性能。并在摩擦表面形成由TiO2、Fe2O3以及有机碎片所组成的边界润滑膜。  相似文献   

10.
主晶相为莫来石复合纳米晶的制备、结构表征及性能测试   总被引:7,自引:0,他引:7  
以高岭土为原料,采用水热晶化法,制得了主晶相为莫来石的复合纳米晶。利用XRD、TEM、BET及TG-TDA以在不同条件下制得的纳米晶物相、粒度及热稳定性进行了表征。对复合纳米晶进行了CO、SO2程序升温脱附性能测试。对负载Ni、Mo、Co进行程序升温还原测试。结果表明:在脱附物中检测出CO2与固体硫,证明吸附质在纳米晶表面发生了反应。微米晶与纳米晶负载Ni、Co、Mn后,随着粒度的不同,负载上的氧化物与载体的相互作用力不同,而表现出不同的峰温与峰面积,表面负载上Ni、Co、Mn的氧化物与载体有结构效应,且随晶体表面结构的不同,而表现出不同的H2消耗量。  相似文献   

11.
The use of a double hydrophilic block copolymer (DHBC), poly(ethylene oxide)-block-poly(acrylic acid) (PEO-b-PAA) to prepare magnetic nanoparticle (MNP) clusters was investigated. In this one-pot synthesis method, the DHBC controlled the particle growth and served as both stabilizer and clustering agent. Depending on the iron-to-polymer ratio, the synthesized particles can be in the form of colonies of small iron oxide particles or clusters of these particles with size larger than 100 nm. Compared to the previous reported result using random copolymers, the clusters prepared with DHBC were more compact and homogeneous. The yield of clusters increased when the amount of polymer added was limiting. Insufficient amounts of polymer resulted in the formation of bare patches on the magnetite surface, and the strong van der Waals attraction induced cluster formation.  相似文献   

12.
Understanding the segmental dynamics of polymer chains is cardinal to decipher the microscopic behaviour in order to modulate the bulk properties of polymers. The study of electron spin resonance (ESR) spectroscopy of spin-labelled polymers is useful to understand the segmental dynamics of polymer chains in solution. In this paper, poly(acrylic acid)s (PAAs) were spin labelled with 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl radicals. Spin-labelled PAAs (SL-PAAs) were characterised by Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, thermogravimetric analysis, differential scanning calorimetry, cyclic voltammetry (CV), and ESR analyses. The polyelectrolyte complexes of SL-PAAs were prepared by employing poly(diallyldimethylammonium chloride) (PDADMAC) as the polycation and analysed by transmission electron microscopy, dynamic light scattering (DLS), and ESR spectroscopies. The effect of molar mass on the segmental dynamics of SL-PAAs in pristine as well as in the form of polyelectrolyte complexes (PECs) was studied. The results indicated that SL-PAAs show a differential complexation behaviour with PDADMAC in the PECs depending on their molar mass.  相似文献   

13.
Poly(lactic acid) (PLA)-coated magnetic nanoparticles were made using uncapped PLA with free carboxylate groups. The physical properties of these particles were compared to those of oleate-coated or oleate/sulphonate bilayer (W40) coated magnetic particles. Magnetic microspheres (MMS) with the matrix material poly(lactide-co-glycolide) (PLGA) or PLA were then formed by the emulsion solvent extraction method with encapsulation efficiencies of 40%, 83% and 96% for oleate, PLA and oleate/sulfonate-coated magnetic particles, respectively. MMS made from PLA-coated magnetite were hemocompatible and produced no hemolysis, whereas the other MMS were hemolytic above 0.3 mg/mL of blood.  相似文献   

14.
Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.  相似文献   

15.
We measured longitudinal speed of sound for matrix[poly(lactic acid)]-additive(clay particles) composite rectangular-solid specimen prepared by injection molding. It was found that the speed of sound measured in the direction along the longer side of the specimen was the highest at the middle of the specimen. This trend corresponded with that for crystallinity determined through differential scanning calorimetry (DSC). A cross section view of the specimen parallel to its longer side showed that there was a transverse flow trace of resin in the vicinity of the injection gate while the flow trace along the direction of the longer side spread wider as getting far from the gate toward the middle of the specimen. The high crystallinity appeared in the middle of the specimen was inferred to come from the promotion of crystallization by molecular orientation induced with the above flow trace parallel to the direction along the longer side of the specimen.  相似文献   

16.
Poly(4-vinylbenzeneboronic acid), PVBBA was synthesized via free-radical polymerization of 4-vinylbenzeneboronic acid (4-VBBA) and followed by crosslinking with polyethylene glycol (PEG) with different molecular weights to produce boron containing crosslinked polymers. Prior to crosslinking, the materials were doped with CF3SO3Li at several stoichiometric ratios to get PVBBAPEGX-Y where X is the molecular weight of PEG and Y is the EO/Li ratio. The materials were characterized by using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC). The ionic conductivity of these novel crosslinked electrolytes was studied by dielectric-impedance spectroscopy. Li-ion conductivity of these polymer electrolytes depends on the length of the side units as well as the doping ratio. PVBBAPEG200-10 illustrated a satisfactory ionic conductivity of 3.1 × 10?5 S/cm at 20 °C and 1.8 × 10?3 S/cm at 100 °C.  相似文献   

17.
The composite comprised of zinc oxide quantum dots and poly(amic acid) (PAAc) was prepared and studied by X-rays diffraction, X-ray photoelectron spectroscopy, light scattering, UV absorbance and UV fluorescence. The UV absorbance of the ZnO/PAAc composite was found to be much larger than that of its components taken separately. The fluorescence of the ZnO/PAAc composite was found to be shifted to longer wavelengthes in comparison with pure ZnO. The presence of the dopant dodecylbenzenesulfonic acid was found to affect the observed fluorescence.  相似文献   

18.
Hollow silver spheres were successfully prepared by reducing AgNO3 with ascorbic acid and using negatively charged poly-(styrene-methyl acrylic acid) (PSA) spheres as templates in the presence of sodium polyacrylate as a stabilizer. Firstly, silver cations adsorbed on the surface of PSA spheres via electrostatic attraction between the carboxyl groups and silver cations were reduced in situ by ascorbic acid. The silver nanoparticles deposited on the surface of PSA spheres served as seeds for the further growth of silver shells. After that, extra amount of AgNO3 and ascorbic acid solutions were added to form PSA/Ag composites with thick silver shells. In order to obtain compact silver shells, the as-prepared PSA/Ag composites were heated at 150 °C for 3 h. Then hollow silver spheres were prepared by dissolving PSA templates with tetrahydrofuran.  相似文献   

19.
Experimental investigations on a sodium ion conducting gel polymer electrolyte nanocomposite based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), dispersed with silica nanoparticles are reported. The gel nanocomposites have been obtained in the form of dimensionally stable, transparent and free-standing thick films. Physical characterization by X-ray diffraction (XRD), Fourier transform Infra-red (FTIR) spectroscopy and Scanning electron microscopy (SEM) have been performed to study the structural changes and the ion-filler-polymer interactions due to the dispersion of SiO2 nanoparticles in gel electrolytes. The highest ionic conductivity of the electrolyte has been observed to be 4.1 × 10−3 S cm− 1 at room temperature with ~ 3 wt.% of SiO2 particles. The temperature dependence of the ionic conductivity has been found to be consistent with Vogel-Tammen-Fulcher (VTF) relationship in the temperature range from 40 to 70 °C. The sodium ion conduction in the gel electrolyte film is confirmed from the cyclic voltammetry, impedance analysis and transport number measurements. The value of sodium ion transport number (tNa+) of the gel electrolyte is significantly enhanced to a maximum value of 0.52 on the 15 wt.% SiO2 dispersion. The physical and electrochemical analyses indicate the suitability of the gel electrolyte films in the sodium batteries. A prototype sodium-sulfur battery, fabricated using optimized gel electrolyte, offers the first discharge capacity of ~165 mAh g− 1 of sulfur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号