首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on photoluminescence investigations of individual InAs quantum dots embedded in an AlAs matrix which emit in the visible region, in contrast to the more traditional InAs/GaAs system. Biexciton binding energies, considerably larger than for InAs/GaAs dots, up to 9 meV are observed. The biexciton binding energy decreases with decreasing dot size, reflecting a possible crossover to an antibinding regime. Exciton and biexciton emission consists of linearly cross polarized doublets due to a large fine structure splitting up to 0.3 meV of the bright exciton state. With increasing exciton transition energy the fine structure splitting decreases down to zero at about 1.63 eV. Differences with InAs/GaAs QDs may be attributed to major dot shape anisotropy and/or larger confinement due to higher AlAs barriers.  相似文献   

2.
张志伟  赵翠兰  孙宝权 《物理学报》2018,67(23):237802-237802
采用双层耦合量子点的分子束外延生长技术生长了InAs/GaAs量子点样品,把量子点的发光波长成功地拓展到1.3 μm.采用光刻的工艺制备了直径为3 μm的柱状微腔,提高了量子点荧光的提取效率.在低温5 K下,测量得到量子点激子的荧光寿命约为1 ns;单量子点荧光二阶关联函数为0.015,显示单量子点荧光具有非常好的单光子特性;利用迈克耳孙干涉装置测量得到单光子的相干时间为22 ps,对应的谱线半高全宽度为30 μeV,且荧光谱线的线型为非均匀展宽的高斯线型.  相似文献   

3.
王海艳  窦秀明  倪海桥  牛智川  孙宝权 《物理学报》2014,63(2):27801-027801
通过测量光致发光(PL)谱、PL时间分辨光谱及不同激发功率下PL发光强度,研究了低温(5 K)下等离子体对InAs单量子点PL光谱的增强效应.采用电子束蒸发镀膜技术在InAs量子点样品表面淀积了5 nm厚度的金膜,形成纳米金岛膜结构.实验发现,金岛膜有利于量子点样品发光强度的增加,最大PL强度增加了约5倍,其主要物理机理是金岛膜纳米结构提高了量子点PL光谱的收集效率.  相似文献   

4.
In this paper, we perform systematic calculations of the stress and strain distributions in InAs/GaAs truncated pyramidal quantum dots (QDs) with different wetting layer (WL) thickness, using the finite element method (FEM). The stresses and strains are concentrated at the boundaries of the WL and QDs, are reduced gradually from the boundaries to the interior, and tend to a uniform state for the positions away from the boundaries. The maximal strain energy density occurs at the vicinity of the interface between the WL and the substrate. The stresses, strains and released strain energy are reduced gradually with increasing WL thickness. The above results show that a critical WL thickness may exist, and the stress and strain distributions can make the growth of QDs a growth of strained three-dimensional island when the WL thickness is above the critical value, and FEM can be applied to investigate such nanosystems, QDs, and the relevant results are supported by the experiments.  相似文献   

5.
The third-order optical nonlinear refractive properties of InAs/GaAs quantum dots grown by molecular beam epitaxy have been measured using the reflection Z-scan technique at above-bandgap energy. The nonlinear refractive index and nonlinear absorption index of the InAs/GaAs quantum dots were determined for wavelengths from 740 to 777 nm. The measured results are compared with the nonlinear refractive response of several typical III-V group semiconductor materials. The corresponding mechanisms responsible for the large nonlinear response are discussed.  相似文献   

6.
郭汝海  时红艳  孙秀冬 《中国物理》2004,13(12):2141-2146
The quantum confined Stark effect (QCSE) of the self-assembled InAs/GaAs quantum dots has been investigated theoretically. The ground-state transition energies for quantum dots in the shape of a cube, pyramid or “truncated pyramid” are calculated and analysed. We use a method based on the Green function technique for calculating thestrain in quantum dots and an efficient plane-wave envelope-function technique to determine the ground-state electronic structure of them with different shapes. The symmetry of quantum dots is broken by the effect of strain. So the properties of carriers show different behaviours from the traditional quantum device. Based on these results, we also calculate permanent built-in dipole moments and compare them with recent experimental data. Our results demonstrate that the measured Stark effect in self-assembled InAs/GaAs quantum dot structures can be explained by including linear grading.  相似文献   

7.
刘宁  金鹏  王占国 《中国物理 B》2012,(11):410-413
We report the effect of the GaAs spacer layer thickness on the photoluminescence(PL) spectral bandwidth of InAs/GaAs self-assembled quantum dots(QDs).A PL spectral bandwidth of 158 nm is achieved with a five-layer stack of InAs QDs which has a 11-nm thick GaAs spacer layer.We investigate the optical and the structural properties of the multilayer-stacked InAs/GaAs QDs with different GaAs spacer layer thicknesses.The results show that the spacer thickness is a key parameter affecting the multi-stacked InAs/GaAs QDs for wide-spectrum emission.  相似文献   

8.
董庆瑞  牛智川 《物理学报》2005,54(4):1794-1798
在有效质量近似条件下研究了垂直耦合的自组织InAs/GaAs量子点的激子态.在绝热近似条件下,采用传递矩阵方法计算了电子和空穴的能谱.通过哈密顿量矩阵的对角化,对电子和空穴间的库仑相互作用进行了精确处理.讨论了两量子点间的垂直距离对激子基态能的影响.从基态波函数概率分布的角度,讨论了激子的束缚能.计算了重空穴和轻空穴激子的基态能随外部垂直磁场变化的函数关系.计算了量子点大小(量子点半径)对激子能的影响. 关键词: 量子点 激子 对角化  相似文献   

9.
We show nanomechanical force is useful to dynamically control the optical response of self-assembled quantum dots, giving a method to shift electron and heavy hole levels, interval of electron and heavy hole energy levels, and the emission wavelength of quantum dots (QDs). The strain, the electron energy levels, and heavy hole energy levels of InAs/GaAs(001) quantum dots with vertical nanomechanical force are investigated. Both the lattice mismatch and nanomechanical force are considered at the same time. The results show that the hydrostatic and the biaxial strains inside the QDs subjected to nanomechanical force vary with nanomechanical force. That gives the control for tailoring band gaps and optical response. Moreover, due to strain-modified energy, the band edge is also influenced by nanomechanical force. The nanomechanical force is shown to influence the band edge. As is well known, the band offset affects the electronic structure, which shows that the nanomechanical force is proven to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the nanomechanical force can be used to dynamically control the optics of quantum dots.  相似文献   

10.
张红  王学  赵剑锋  刘建军 《中国物理 B》2011,20(12):127301-127301
The binding energy of a hydrogenic impurity in self-assembled double quantum dots is calculated via the finite-difference method. The variation in binding energy with donor position, structure parameters and external magnetic field is studied in detail. The results found are: (i) the binding energy has a complex behaviour due to coupling between the two dots; (ii) the binding energy is much larger when the donor is placed in the centre of one dot than in other positions; and (iii) the external magnetic field has different effects on the binding energy for different quantum-dot sizes or lateral confinements.  相似文献   

11.
Currently, the nature of self-assembly of three-dimensional epitaxial islands or quantum dots (QDs) in a lattice-mismatched heteroepitaxial growth system, such as InAs/GaAs(001) and Ge/Si(001) as fabricated by molecular beam epitaxy (MBE), is still puzzling. The purpose of this article is to discuss how the self-assembly of InAs QDs in MBE InAs/GaAs(001) should be properly understood in atomic scale. First, the conventional kinetic theories that have traditionally been used to interpret QD self-assembly in heteroepitaxial growth with a significant lattice mismatch are reviewed briefly by examining the literature of the past two decades. Second, based on their own experimental data, the authors point out that InAs QD self-assembly can proceed in distinctly different kinetic ways depending on the growth conditions and so cannot be framed within a universal kinetic theory, and, furthermore, that the process may be transient, or the time required for a QD to grow to maturity may be significantly short, which is obviously inconsistent with conventional kinetic theories. Third, the authors point out that, in all of these conventional theories, two well-established experimental observations have been overlooked: i) A large number of “floating” indium atoms are present on the growing surface in MBE InAs/GaAs(001); ii) an elastically strained InAs film on the GaAs(001) substrate should be mechanically unstable. These two well-established experimental facts may be highly relevant and should be taken into account in interpreting InAs QD formation. Finally, the authors speculate that the formation of an InAs QD is more likely to be a collective event involving a large number of both indium and arsenic atoms simultaneously or, alternatively, a morphological/structural transformation in which a single atomic InAs sheet is transformed into a three-dimensional InAs island, accompanied by the rehybridization from the sp2-bonded to sp3- bonded atomic configuration of both indium and arsenic elements in the heteroepitaxial growth system.  相似文献   

12.
研究了GaSb/GaAs复合应力缓冲层上自组装生长的InAs量子点.在2ML GaSb/1ML GaAs复合应力缓冲层上获得了高密度的、沿[100]方向择优分布量子点.随着复合应力缓冲层中GaAs层厚度的不同,量子点的密度可以在1.2×1010cm-2和8×1010cm-2进行调控.适当增加GaAs层的厚度至5ML,量子点的发光波长红移了约25nm,室温下PL光谱波长接近1300nm. 关键词: 自组装量子点 分子束外延 Ⅲ-Ⅴ族化合物半导体  相似文献   

13.
We report on the effect of the Debye averaging process on the CV characteristics of a sample containing four coupled planes of InAs self-assembled quantum dots. The observed electron distribution presented a dynamical dependence of the temperature during the CV measurements which was explained in terms of the screening length dependence on the temperature. In addition, using the CV data, we calculated the electron density at the planes containing the InAs dots and we have observed a high-temperature stability: the electron density at the quantum dots remained constant over a large range of temperature.  相似文献   

14.
Resonant luminescence studies of InAs quantum dots (QDs) embedded in a GaAs matrix grown by molecular beam epitaxy are presented, showing marked differences for modulation-doped and undoped QDs and indicating that the doping leads to different exciton formation and carrier relaxation mechanisms. The LO-phonon assisted relaxatioin of excitons between sub-levels is identified for the modulation-doped QDs.  相似文献   

15.
Guo-Feng Wu 《中国物理 B》2021,30(11):110201-110201
The threading dislocations (TDs) in GaAs/Si epitaxial layers due to the lattice mismatch seriously degrade the performance of the lasers grown on silicon. The insertion of InAs quantum dots (QDs) acting as dislocation filters is a pretty good alternative to solving this problem. In this paper, a finite element method (FEM) is proposed to calculate the critical condition for InAs/GaAs QDs bending TDs into interfacial misfit dislocations (MDs). Making a comparison of elastic strain energy between the two isolated systems, a reasonable result is obtained. The effect of the cap layer thickness and the base width of QDs on TD bending are studied, and the results show that the bending area ratio of single QD (the bending area divided by the area of the QD base) is evidently affected by the two factors. Moreover, we present a method to evaluate the bending capability of single-layer QDs and multi-layer QDs. For the QD with 24-nm base width and 5-nm cap layer thickness, taking the QD density of 1011 cm-2 into account, the bending area ratio of single-layer QDs (the area of bending TD divided by the area of QD layer) is about 38.71%. With inserting five-layer InAs QDs, the TD density decreases by 91.35%. The results offer the guidelines for designing the QD dislocation filters and provide an important step towards realizing the photonic integration circuits on silicon.  相似文献   

16.
A systematic dependence of excitonic properties on the size of self-organized InAs/GaAs quantum dots is presented. The bright exciton fine-structure splitting changes from negative values to more than 0.5 meV, and the biexciton binding energy varies from antibinding to binding, as the height of truncated pyramidal dots increases from 2 to above 9 InAs monolayers. A novel mode of metalorganic vapor phase epitaxy was developed for growing such quantum dots with precise shape control. The dots consist of pure InAs and feature heights varying in steps of complete InAs monolayers. Such dot ensembles evolve from a strained, rough two-dimensional layer with a thickness close to the critical value for the onset of the 2D–3D transition. Dots with a common height represent subensembles with small inhomogeneous broadening. Tuning of subensemble emission energy is achieved by varying the mean lateral extension of the respective QDs. Detailed knowledge of the structural properties of individual dots enable realistic k·p calculations to analyze the origin of the observed excitonic properties. The binding energies of charged and neutral excitons increase due to correlation by the gradually increasing number of bound states for increasing dot size. The monotonously increasing magnitude of the fine-structure splitting with dot size is shown to be caused by piezoelectricity. The identification of key parameters allows to tailor exciton properties, providing a major step towards the development of novel applications.  相似文献   

17.
宋鑫  冯淏  刘玉敏  俞重远  刘建涛 《中国物理 B》2013,22(1):17304-017304
The strain and electron energy levels of InAs/GaAs(001) quantum dots (QDs) with a GaNAs strain compensation layer (SCL) are investigated. The results show that both the hydrostatic and biaxial strain inside the QDs with a GaNAs SCL are reduced compared with those with GaAs capping layers. Moreover, most of the compressive strain in the growth surface is compensated by the tensile strain of the GaNAs SCL, which implies that the influence of the strain environment of underlying QDs upon the next-layer QDs’ growth surface is weak and suggests that the homogeneity and density of QDs can be improved. Our results are consistent with the published experimental literature. A GaNAs SCL is shown to influence the strain and band edge. As is known, the strain and the band offset affect the electronic structure, which shows that the SCL is proved to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the strain compensation technology can be applied to the growth of stacked QDs, which are useful in solar cells and laser devices.  相似文献   

18.
In this paper, taking elastic anisotropy into consideration, we use a dislocation position dependent model to calculate the preferential formation site of the pure edge and 60° mixed dislocation segment in different shaped InAs/GaAs quantum dots (QDs). From the result, it is clear that for the pure edge dislocations the most energy favorable position is always the base center of the quantum dots. While as to the 60° mixed dislocations, the positions near to the edge of the quantum dot base are the energy favorable area and the exact position is changed with different aspect ratio of the quantum dot.  相似文献   

19.
Properties of excitons confined to potential fluctuations due to indium distribution in the wetting layer which accompany self-assembled InAs/GaAs quantum dots are reviewed. Spectroscopic studies are summarized including time-resolved photoluminescence and corresponding single-photon emission correlation measurements. The identification of charge states of excitons is presented which is based on results of a theoretical analysis of interactions between the involved carriers. The effect of the dots’ environment on their optical spectra is also shown.  相似文献   

20.
The self-assembled InAs/GaAs quantum dots (QDs) with extremely low density of 8×106 cm-2 are achieved using higher growth temperature and lower InAs coverage by low-pressure metal-organic chemical vapour deposition (MOVCD). As a result of micro-photoluminescence (micro-PL), for extremely low density of 8×106 cm-2 InAs QDs in the micro-PL measurements at 10 K, only one emission peak has been achieved. It is believed that the InAs QDs have a good potential to realize single photon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号