首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the properties of a compact diode-pumped continuous-wave Nd:GdV04 laser with a linear cavity and different Nd-doped laser crystals. In a 0.2at.% Nd-doped Nd:GdVO4 laser, 1.54 W output laser power is achieved at 912nm wavelength with a slope efficiency of 24.8% at an absorbed pump power of 9.4W. With 0.3at.% Nd-doping concentration, we can obtain the either single-wavelength emission at 1064nm or 912nm or the dual-wavelength emission at 1064nm and 912nm by controlling the incident pump power. From an incident pump power of 11.6 W, the 1064nm emission between ^4Fa/2 and ^4I11/2 is suppressed completely by the 912nm emission between ^4Fa/2 and ^4I9/2. We obtain 670 mW output of the 912nm single-wavelength laser emission with a slope efficiency of 5.5% by taking an incident pump power of 18.4 W. Using a Nd:GdV04 laser with 0.4at.% Nd-doping concentration, we obtain either the single-wavelength emission at 1064nm or the dual-wavelength emission at both 1064nm and 912nm by increasing the incident pump power. We observe a strong competition process in the dualavelength laser.  相似文献   

2.
We present a high power and efficient operation of the ^4F3/2 → ^4I9/2 transition in Nd:GdVO4 at 912nm. In the cw mode, the maximum output power of 8.6 W is achieved when the incident pump power is 40.3 W, leading to a slope efficiency of 33.3% and an optical-optical efficiency of 21.3%. To the best of our knowledge, this is the highest cw laser power at 912nm obtained with the conventional Nd:GdVO4 crystal. Pulsed operation of 912nm laser has also been realized by inserting a small aeousto-optie (A-O) Q-Switch inside the resonator. As a result, the minimal pulse width of 20ns and the average laser power 1.43 W at the repetition rate of lOkHz are obtained, corresponding to 7.1 kW peak power. We believe that this is the highest laser peak power at 912nm. Furthermore, duration of 65ns has also been acquired when the repetition rate is 100 kHz.  相似文献   

3.
A new Yb-doped oxyorthosilicate laser crystal, Yb:Gd2SiO5 (Yb:GSO), has been grown by the Czochralski (Cz) method. The crystal structure was determined by means of X-ray diffraction analysis. Room temperature absorption and fluorescence spectra of Yb3+ ions in GSO crystal were measured. Then, spectroscopic parameters of Yb:GSO were calculated and compared with those of another Yb-doped oxyorthosilicate crystal Yb:YSO. Results indicated that Yb:GSO crystal seemed to be a very promising laser gain media in generating ultra-pulses and tunable solid state laser applications. As expected, the output power of 2.72 W at 1089 nm was achieved in Yb:GSO crystal with absorbed power of only 4.22 W at 976 nm, corresponding to the slope efficiency of 71.2% through the preliminary laser experiment.  相似文献   

4.
A laser-diode end-pumped Nd:YVO4 slab laser with a fiat-concave stable cavity at 1342nm is demonstrated. Under the pumping power of 92 W, a cw laser of output 17.8 W is obtained with the slope efficiency of 25.6%.  相似文献   

5.
A liquid nitrogen cooled dual-wavelength Tm,Ho:GdVO4 microchip laser is reported. The output dual wavelengths axe at 2038.9nm and 2050.1 nm. At each wavelength, the laser has a single longitudinal mode. The threshold power is nearly 20mW and the slope efficiency is 18.7%. The single longitudinal mode output power reaches 98mW, and the ratio of power is about 60% (2038.9nm) and 40% (2050.1 nm).  相似文献   

6.
A thin-disc Nd:GdVO4 laser in multi-pass pumping scheme was developed. Continuous-wave output power of 13.9 W at 1.06 μm for an absorbed power at 808 nm of 22 W was demonstrated from a 250-μm thick, 0.5-at.% Nd:GdVO4 in a 4-pass pumping; the slope efficiency in absorbed power was 0.65, or 0.47 in input power. Output performances were also investigated under diode laser pumping at 879 nm, directly into the emitting 4F3/2 level: maximum power of 3.6 W was obtained at 6.2 W of absorbed power with 0.69 slope efficiency. Compared with pumping at 808 nm, into the highly absorbing 4F5/2 level, improvements of laser parameter in absorbed power (increase of slope efficiency, decrease of threshold) were obtained, showing the advantages of the pumping into the emitting level. However, the laser performances expressed vs. the incident power were modest owing to the low absorption efficiency at 879 nm. Thus, increased number of passes of the medium would be necessary in order to match the performances in input power obtained under 808-nm pumping.  相似文献   

7.
We have demonstrated a high-power laser oscillator with end-cooling using a sapphire-sandwiched Yb:YAG disk at near liquid nitrogen temperature. An output power of 75 W with a near-diffraction-limited beam was obtained from a 0.6-mm thick activemedium. The slope efficiency and themaximum optical–optical efficiency were 80 and 70%, respectively, with respect to absorbed pump power.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

8.
We have demonstrated a diode-pumped intra-cavity frequency doubling Nd:LuVO4 laser operating at 916 nm with a Z-folded cavity. A 10-mm long LBO crystal, cut for critical type I phase matching at 912 nm, is used for the experiment. A maximum output power of 330 mW at 458 nm has been achieved at pump power of 22 W. The optical-to-optical conversion efficiency and slope efficiency is 1.5% and 2.3%, respectively. The power instability at the maximum output power in 30 min is better than 3%.  相似文献   

9.
研究了Yb:KLu(WO4)2晶体对非偏振抽运光的吸收以及连续波激光振荡性质. 晶体结构的低对称性导致晶体光谱呈强烈各向异性,最强的吸收和发射都发生在平行于Nm主轴的偏振方向上. Ng切向晶体具有最高的非偏振抽运光吸收效率和最大的激光功率产生潜力,2 mm长的晶体产生的最高连续波输出功率为11 W,相对于吸收抽运功率,光—光转换效率为68%,而斜率效率则达80%. 关键词: 吸收谱 发射谱 激光振荡 各向异性  相似文献   

10.
We experimentally investigate the laser characteristics of a series of short pieces of newly-developed Er3+/Yb3+ codoped single mode phosphate glass fibres via the cladding pump of a 976nm multimode laser diode. A stablecontinuous-wave single transverse mode laser with over 85mW at 1553nm is generated from a 5.5-cm-long active fibre. Single mode laser output power per unit length is up to 15mW/cm. Moreover, the slope efficiency is 11.8% when the pump power is below 940mW and the 3dB linewidth is 0.06nm at the maximum pump power. The numerical simulation results show that the laser emission slope efficiency can exceed 20% by means of increasing the coupling efficiency of the pump to the fibre core further.  相似文献   

11.
We report a high-effciency Nd:YAG laser operating at 1064 nm and 1319nm, respectively, thermally boosted pumped by an all-solid-state Q-switched Ti:sapphire laser at 885 nm. The maximum outputs of 825.4 m W and 459.4mW, at 1064nm and 1319nm respectively, are obtained in a 8-ram-thick 1.1 at.% Nd:YAG crystal with 2.1 W of incident pump power at 885nm, leading to a high slope efficiency with respect to the absorbed pump power of 68.5% and 42.0%. Comparative results obtained by the traditional pumping at 808nm are presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power at 1064nm under the 885nm pumping are 12.2% higher and 7.3% lower than those of 808rim pumping. At 1319nm, the slope efficiency and the threshold with respect to the absorbed pump power under 885nm pumping are 9.9% higher and 3.5% lower than those of 808 nm pumping. The heat generation operating at 1064 nm and 1319 nm is reduced by 19.8% and 11.1%, respectively.  相似文献   

12.
A widely tunable cw diode-pumped room-temperature Tm:GdVO4 laser is built. Output power of 2.8 W and a slope effic/ency of 22% pumped by a 18 W Fibre-coupled diode laser at 795nm have been obtained. Continuous tunability from 1820nm to 1946nm is achieved. In addition, the factors that contribute to the efficiency of oscillation are studied.  相似文献   

13.
We demonstrate a passively Q-switched Nd:LuVO4 laser at 916 nm by using a Nd, Cr:YAG crystal as the saturable absorber. As we know, it is the first time to realize the laser with a simple linear resonator. When the incident pump power increased from 14.6 W to 23.7 W, the pulse width of the Q-switched laser decreased from 24 ns to 21 ns. The pulse width was insensitive to the incident pump power in the experiment. The average output power of 288 mW with repetition rate of 39 kHz was obtained at an incident pump power of 22.5 W, with the optical-to-optical efficiency and slope efficiency 1.3% and 3.6%, respectively.  相似文献   

14.
We describe the output performances of the 1030 nm transition in Yb:YAG under in-band pumping with diode laser at the 968 nm wavelength. An end-pumped Yb:YAG crystal yielded 1.93 W of continuous-wave (CW) output power for 9.1 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 23.6%. Furthermore, 205 mW 515 nm green light was acquired by frequency doubling, resulting in an optical-to-optical efficiency with respect to the absorbed pump power of 2.7%. Comparative results obtained for the pump with diode laser at 940 nm are given in order to prove the advantages of the in-band pumping.  相似文献   

15.
室温下采用中心波长约970 nm准直输出的大功率激光二极管模块作为抽运源,端面抽运双程吸收的腔型结构,抽运原子数分数为8%的Yb:Y2O3多晶透明陶瓷片获得连续激光输出。抽运阈值功率为7 W,当抽运功率达到35 W时,获得优化连续激光输出功率为10.5 W,光光转换效率为30%,斜率效率为37.5%。激光输出功率随抽运功率基本呈线性增长。采用更高功率抽运源、优化谐振腔结构和减小热效应的影响,Yb∶Y2O3陶瓷激光器的输出功率和效率将会得到进一步提高。  相似文献   

16.
We design an efficient passively Q-switched laser using a composite YAG/Yb:YAG crystal as the laser gain medium and a Cr4+:YAG crystal as a saturable absorber. We obtain an average output power of 1.81 W in 1030 nm laser at an absorbed pump power of 4.8 W, corresponding to an optical-to-optical efficiency of 37.7% and a slope efficiency of 47.3%. The pulsed laser has a repetition rate of about 28.6 kHz and a pulse width of 15.8 ns, with the highest peak power of 4 kW. In addition, using a LBO as the intracavity frequency doubler, we obtain a maximum power of 246 mW in 515 nm pulsed laser at an absorbed pump power of 3.8 W.  相似文献   

17.
We report a high-efficiency diode-end-pumped polycrystalline Yb:Y2O3 ceramic laser. Pumped by a 976 nm laser diode bar and with an absorbed pump power of 2.8 W, cw output power of 1.74 W at 1078 nm, and 0.73 W at 1040 nm were obtained. The slope efficiency was measured to be 82.4% for the 1078 nm laser emission and 57.1% for the 1040 nm laser emission.  相似文献   

18.
By employing a tunable Ti:sapphire laser, we conducted an investigation into the effects of pump wavelength deviation on the laser performance of Yb:KLu(WO4)2 crystal. Pumping efficiencies exceeding 70% could be reached under lasing conditions with a 3-mm crystal of Yb concentration of 5.24 at.%, when the pumping wavelength was within the main absorption band centered at 981 nm extending from 974 to 990 nm. For different pumping wavelengths, the laser exhibited a single output–input relation with respect to absorbed pump power, giving an average slope efficiency amounting to 51%.  相似文献   

19.
A compact low-threshold Raman laser at 1178 nm is experimentally realized by using a diode-end-pumped actively Q-switched Nd^3+ :YVO4 self-Raman laser. The threshold is 370mW at a pulse repetition frequency of S kHz. The maximum Raman laser output is 182 m W with the pulse duration smaller than 20 ns at a pulse repetition frequency of 30kHz with 1.8 W incident power. The optical efficiency from the incident power to the Raman laser is 10% and the slope efficiency is 13.5%.  相似文献   

20.
The laser properties of the Nd:YGG crystal are investigated. The absorption spectrum from 500 to 90Onto and emission spectrum from 850 to 1400nm of Nd:YGG are measured. As much as 1.35 W output power of fundamental laser operating at 935 and 938nm with a slope efficiency of 15.7% and 105mW output power of frequency doubled blue laser are successfully obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号