首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group is said to have finite (special) rank ≤ sif all of its finitely generated subgroups can be generated byselements. LetGbe a locally finite group and suppose thatH/HGhas finite rank for all subgroupsHofG, whereHGdenotes the normal core ofHinG. We prove that thenGhas an abelian normal subgroup whose quotient is of finite rank (Theorem 5). If, in addition, there is a finite numberrbounding all of the ranks ofH/HG, thenGhas an abelian subgroup whose quotient is of finite rank bounded in terms ofronly (Theorem 4). These results are based on analogous theorems on locally finitep-groups, in which case the groupGis also abelian-by-finite (Theorems 2 and 3).  相似文献   

2.
Let G be a finite abelian group of order g. We determine, for all 1?r,s?g, the minimal size μG(r,s)=min|A+B| of sumsets A+B, where A and B range over all subsets of G of cardinality r and s, respectively. We do so by explicit construction. Our formula for μG(r,s) shows that this function only depends on the cardinality of G, not on its specific group structure. Earlier results on μG are recalled in the Introduction.  相似文献   

3.
LetG be a profinite group which has an open subgroupH such that the cohomologicalp-dimensiond≔cdp(H) is finite (p is a fixed prime). The main result of this paper expresses thep-primary part of high degree cohomology ofG in terms of the elementary abelianp-subgroups ofG: From the latter one constructs a natural profinite simplicial setA G, on whichG acts by conjugation. ThenH n(G,M)≅H G n (AG,M) holds fornd+r and everyp-primary discreteG-moduleM (rp-rank ofG). If one uses profinite Farrell cohomology, which is introduced in this paper, the analogous fact holds in all degrees. These results are the profinite analogues of theorems by K.S. Brown for discrete groups.  相似文献   

4.
Let A be an infinite set that generates a group G. The sphere S A (r) is the set of elements of G for which the word length with respect to A is exactly r. We say G admits all finite transitions if for every r ≥ 2 and every finite symmetric subset W ì G\{e}{W \subset G{\setminus}\{e\}}, there exists an A with S A (r) = W. In this paper we determine which countable abelian groups admit all finite transitions. We also show that \mathbbRn{\mathbb{R}^n} and the finitary symmetric group on \mathbbN{\mathbb{N}} admit all finite transitions.  相似文献   

5.
Let Φ be a root system of typeA , ℓ ≧ 2,D , ℓ ≧ 4 orE , 6 ≧ ℓ ≧ 8 andG a group generated by nonidentity abelian subgroupsA r,r∈Φ, satisfying:
(i)  [A r, As]=1 ifs≠−r and ∉ Φ,
(ii)  [A r, As]≦A r+s ifr+s∈Φ,
(iii)  X r=〈Ar, A−r〉 is a rank one group.
Then it is shown, using [3], thatG is a central product of Lie-type groups corresponding to a decomposition of Φ into root-subsystems.  相似文献   

6.
All graphs considered are finite, undirected, with no loops, no multiple edges and no isolated vertices. For two graphsG, H, letN(G, H) denote the number of subgraphs ofG isomorphic toH. Define also, forl≧0,N(l, H)=maxN(G, H), where the maximum is taken over all graphsG withl edges. We determineN(l, H) precisely for alll≧0 whenH is a disjoint union of two stars, and also whenH is a disjoint union ofr≧3 stars, each of sizes ors+1, wheresr. We also determineN(l, H) for sufficiently largel whenH is a disjoint union ofr stars, of sizess 1s 2≧…≧s r>r, provided (s 1s r)2<s 1+s r−2r. We further show that ifH is a graph withk edges, then the ratioN(l, H)/l k tends to a finite limit asl→∞. This limit is non-zero iffH is a disjoint union of stars.  相似文献   

7.
LetG be a finite abelian group,K a subfield ofC, C[G] regarded as an algebra of matrices.A G K {AC[G]| all the entries and eigenvalues ofA are inK} is an association algebra overK. In this paper, the association scheme ofA G K is determined and in the caseK=Q(i), the first eigenmatrix of the association scheme computed. As an application, it is proved thatZ 4×Z 4×Z 4 is the only abelian group admitted as a Singer group by some distance-regular digraph of girth 4 on 64 vertices.  相似文献   

8.
V. Rödl  N. Sauer  X. Zhu 《Combinatorica》1995,15(4):589-596
For graphsA andB the relationA(B) r 1 means that for everyr-coloring of the vertices ofA there is a monochromatic copy ofB inA. Forb (G) is the family of graphs which do not embedG. A familyof graphs is Ramsey if for all graphsBthere is a graphAsuch thatA(B) r 1 . The only graphsG for which it is not known whether Forb (G) is Ramsey are graphs which have a cutpoint adjacent to every other vertex except one. In this paper we prove for a large subclass of those graphsG, that Forb (G) does not have the Ramsey property.This research has been supported in part by NSERC grant 69-1325.  相似文献   

9.
LetG be a finite transitive permutation group on a finite setS. LetA be a nonempty subset ofS and denote the pointwise stabilizer ofA inG byC G (A). Our main result is the following inequality: [G :C G (A)]≥|G||A|/|S|. This paper is a part of the author’s Ph.D. thesis research, carried out at Tel Aviv University under the supervision of Professor Marcel Herzog.  相似文献   

10.
In this paper, we study a tower {A n G: n} ≥ 1 of finite-dimensional algebras; here, G represents an arbitrary finite group,d denotes a complex parameter, and the algebraA n G(d) has a basis indexed by ‘G-stable equivalence relations’ on a set whereG acts freely and has 2n orbits. We show that the algebraA n G(d) is semi-simple for all but a finite set of values ofd, and determine the representation theory (or, equivalently, the decomposition into simple summands) of this algebra in the ‘generic case’. Finally we determine the Bratteli diagram of the tower {A n G(d): n} ≥ 1 (in the generic case).  相似文献   

11.
In this note we strengthen the stability theorem of Erd?s and Simonovits. Write Kr(s1, …, sr) for the complete r‐partite graph with classes of sizes s1, …, sr and Tr(n) for the r‐partite Turán graph of order n. Our main result is: For all r≥2 and all sufficiently small c>0, ε>0, every graph G of sufficiently large order n with e(G)>(1?1/r?ε)n2/2 satisfies one of the conditions:
  • (a) G contains a $K_{r+1} (\lfloor c\,\mbox{ln}\,n \rfloor,\ldots,\lfloor c\,\mbox{ln}\,n \rfloor,\lceil n^{{1}-\sqrt{c}}\rceil)In this note we strengthen the stability theorem of Erd?s and Simonovits. Write Kr(s1, …, sr) for the complete r‐partite graph with classes of sizes s1, …, sr and Tr(n) for the r‐partite Turán graph of order n. Our main result is: For all r≥2 and all sufficiently small c>0, ε>0, every graph G of sufficiently large order n with e(G)>(1?1/r?ε)n2/2 satisfies one of the conditions:
    • (a) G contains a $K_{r+1} (\lfloor c\,\mbox{ln}\,n \rfloor,\ldots,\lfloor c\,\mbox{ln}\,n \rfloor,\lceil n^{{1}-\sqrt{c}}\rceil)$;
    • (b) G differs from Tr(n) in fewer than (ε1/3+c1/(3r+3))n2 edges.
    Letting µ(G) be the spectral radius of G, we prove also a spectral stability theorem: For all r≥2 and all sufficiently small c>0, ε>0, every graph G of sufficiently large order n with µ(G)>(1?1/r?ε)n satisfies one of the conditions:
    • (a) G contains a $K_{r+1}(\lfloor c\,\mbox{ln}\,n\rfloor,\ldots,\lfloor c\,\mbox{ln}\,n\rfloor,\lceil n^{1-\sqrt{c}}\rceil)$;
    • (b) G differs from Tr(n) in fewer than (ε1/4+c1/(8r+8))n2 edges.
    © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 362–368, 2009  相似文献   

12.
LetA={a 1, …,a k} and {b 1, …,b k} be two subsets of an abelian groupG, k≤|G|. Snevily conjectured that, when |G| is odd, there is a numbering of the elements ofB such thata i+b i,1≤ik are pairwise distinct. By using a polynomial method, Alon affirmed this conjecture for |G| prime, even whenA is a sequence ofk<|G| elements. With a new application of the polynomial method, Dasgupta, Károlyi, Serra and Szegedy extended Alon’s result to the groupsZ p r andZ p rin the casek<p and verified Snevily’s conjecture for every cyclic group. In this paper, by employing group rings as a tool, we prove that Alon’s result is true for any finite abelianp-group withk<√2p, and verify Snevily’s conjecture for every abelian group of odd order in the casek<√p, wherep is the smallest prime divisor of |G|. This work has been supported partly by NSFC grant number 19971058 and 10271080.  相似文献   

13.
LetG be a connected, simply-connected, real semisimple Lie group andK a maximal compactly embedded subgroup ofG such thatD=G/K is a hermitian symmetric space. Consider the principal fiber bundleM=G/K s G/K, whereK s is the semisimple part ofK=K s ·Z K 0 andZ K 0 is the connected center ofK. The natural action ofG onM extends to an action ofG 1=G×Z K 0 . We prove as the main result thatM is weakly symmetric with respect toG 1 and complex conjugation. In the case whereD is an irreducible classical bounded symmetric domain andG is a classical matrix Lie group under a suitable quotient, we provide an explicit construction ofM=D×S 1 and determine a one-parameter family of Riemannian metrics onM invariant underG 1. Furthermore,M is irreducible with respect to . As a result, this provides new examples of weakly symmetric spaces that are nonsymmetric, including those already discovered by Selberg (cf. [M]) for the symplectic case and Berndt and Vanhecke [BV1] for the rank-one case.Research partially supported by an NSF grant. The author wishes to thank the International Erwin Schroedinger Institute for its hospitality during the preparation of this paper.  相似文献   

14.
Given a group G and positive integers r,s≤|G|, we denote by μG(r,s) the least possible size of a product set AB={abaA,bB}, where A,B run over all subsets of G of size r,s, respectively. While the function μG is completely known when G is abelian [S. Eliahou, M. Kervaire, Minimal sumsets in infinite abelian groups, Journal of Algebra 287 (2005) 449-457], it is largely unknown for G non-abelian, in part because efficient tools for proving lower bounds on μG are still lacking in that case. Our main result here is a lower bound on μG for finite solvable groups, obtained by building it up from the abelian case with suitable combinatorial arguments. The result may be summarized as follows: if G is finite solvable of order m, then μG(r,s)≥μG(r,s), where G is any abelian group of the same order m. Equivalently, with our knowledge of μG, our formula reads .One nice application is the full determination of the function μG for the dihedral group G=Dn and all n≥1. Up to now, only the case where n is a prime power was known. We prove that, for all n≥1, the group Dn has the same μ-function as an abelian group of order |Dn|=2n.  相似文献   

15.
A precise definition of a fractalF p r 1 derived from Pascal's triangle modulop r (p prime) is given. The number of nonzero terms in the firstp s lines of Pascal's triangle modulop r is computed. From this result the Hausdorff dimension and Hausdorff measure ofF p r 1 are deduced. The nonself-similarty ofF p r 1,r2, is also discussed.  相似文献   

16.
Let G be a finite group and let r?. An r-coloring of G is any mapping χ:G→{1,…,r}. Colorings χ and ψ are equivalent if there exists gG such that χ(xg?1) = ψ(x) for every xG. A coloring χ is symmetric if there exists gG such that χ(gx?1g) = χ(x) for every xG. Let Sr(G) denote the number of symmetric r-colorings of G and sr(G) the number of equivalence classes of symmetric r-colorings of G. We count Sr(G) and sr(G) in the case where G is the dihedral group Dn.  相似文献   

17.
Graded rings and essential ideals   总被引:1,自引:0,他引:1  
LetG be a group andA aG-graded ring. A (graded) idealI ofA is (graded) essential ifIJ≠0 wheneverJ is a nonzero (graded) ideal ofA. In this paper we study the relationship between graded essential ideals ofA, essential ideals of the identity componentA e and essential ideals of the smash productA#G *. We apply our results to prime essential rings, irredundant subdirect sums and essentially nilpotent rings.  相似文献   

18.
In this noteG is a locally compact group which is the product of finitely many groups Gs(ks)(s∈S), where ks is a local field of characteristic zero and Gs an absolutely almost simplek s-group, ofk s-rank ≥1. We assume that the sum of the rs is ≥2 and fix a Haar measure onG. Then, given a constantc > 0, it is shown that, up to conjugacy,G contains only finitely many irreducible discrete subgroupsL of covolume ≥c (4.2). This generalizes a theorem of H C Wang for real groups. His argument extends to the present case, once it is shown thatL is finitely presented (2.4) and locally rigid (3.2).  相似文献   

19.
Let G be a finite group andA be a normal subgroup ofG. We denote by ncc(A) the number ofG-conjugacy classes ofA andA is calledn-decomposable, if ncc(A)= n. SetK G = {ncc(A)|A ⊲ G}. LetX be a non-empty subset of positive integers. A groupG is calledX-decomposable, ifK G =X. Ashrafi and his co-authors [1-5] have characterized theX-decomposable non-perfect finite groups forX = {1, n} andn ≤ 10. In this paper, we continue this problem and investigate the structure ofX-decomposable non-perfect finite groups, forX = {1, 2, 3}. We prove that such a group is isomorphic to Z6, D8, Q8, S4, SmallGroup(20, 3), SmallGroup(24, 3), where SmallGroup(m, n) denotes the mth group of ordern in the small group library of GAP [11].  相似文献   

20.
LetG denote either of the groupsGL 2(q) or SL2(q). Then θ :GG given by θ(A) = (A t)t, whereA t denotes the transpose of the matrixA, is an automorphism ofG. Therefore we may form the groupG.θ> which is the split extension of the groupG by the cyclic group θ of order 2. Our aim in this paper is to find the complex irreducible character table ofG. θ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号