首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lam WW  Lee MF  Lau TC 《Inorganic chemistry》2006,45(1):315-321
The kinetics of the oxidation of hydroquinone (H(2)Q) and its derivatives (H(2)Q-X) by trans-[Ru(VI)(tmc)(O)(2)](2+) (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) have been studied in aqueous acidic solutions and in acetonitrile. In H(2)O, the oxidation of H(2)Q has the following stoichiometry: trans-[Ru(VI)(tmc)(O)(2)](2+) + H(2)Q --> trans-[Ru(IV)(tmc)(O)(OH(2))](2+) + Q. The reaction is first order in both Ru(VI) and H(2)Q, and parallel pathways involving the oxidation of H(2)Q and HQ(-) are involved. The kinetic isotope effects are k(H(2)O)/k(D(2)O) = 4.9 and 1.2 at pH = 1.79 and 4.60, respectively. In CH(3)CN, the reaction occurs in two steps, the reduction of trans-[Ru(VI)(tmc)(O)(2)](2+) by 1 equiv of H(2)Q to trans-[Ru(IV)(tmc)(O)(CH(3)CN)](2+), followed by further reduction by another 1 equiv of H(2)Q to trans-[Ru(II)(tmc)(CH(3)CN)(2)](2+). Linear correlations between log(rate constant) at 298.0 K and the O-H bond dissociation energy of H(2)Q-X were obtained for reactions in both H(2)O and CH(3)CN, consistent with a H-atom transfer (HAT) mechanism. Plots of log(rate constant) against log(equilibrium constant) were also linear for these HAT reactions.  相似文献   

2.
A.P. Esteves 《Tetrahedron》2007,63(14):3006-3009
The controlled-potential reduction of [1-bromo-2-methoxy-2-(prop-2′-ynyloxy)ethyl]benzene (1a), 1-[2-bromo-2-phenyl-1-(prop-2′-ynyloxy)ethyl]-4-methoxybenzene (1b) and 2-bromo-3-(3′,4′-dimethoxyphenyl)-3-propargyloxypropanamide (1c) catalysed by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)]+, at a vitreous carbon cathode in DMF/Et4NBF4 leads to 2-methoxy-4-methylene-3-phenyl-tetrahydrofuran (2a), 2-(4′-methoxyphenyl)-4-methylene-3-phenyl-tetrahydrofuran (2b) and 2-(3′,4′-dimethoxyphenyl)-3-carbamoyl-4-methylenetetrahydrofuran (2c), respectively, in very high yields.  相似文献   

3.
Reaction of the complex [Ni(rac-CTH)](2+) (rac-CTH = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) with [Fe(CN)(6)](3-) leads to a novel cyano-bridged Ni(3)Fe(2) complex, [[Ni(rac-CTH)](3)[Fe(CN)(6)](2)](4). The structure consists of an alternating arrangement of [Fe(CN)(6)Ni(rac-CTH)](2) squares and trans-planar [Ni(rac-CTH)](2+) units bridged by cyanide groups to give a neutral 1D chain running along the a axis. Magnetic measurements reveal the occurrence of ferromagnetic coupling between Fe(III) and Ni(II) ions and 3D magnetic ordering at 3 K due to interchain interactions. Canting of the moments is inferred from the low value of the magnetization of the saturation below T(c).  相似文献   

4.
The pentadentate ligand 14-oxa-1,4,8,11-tetraazabicyclo[9.5.3]nonadecane (L1) has been synthesized by the high dilution cyclization of 1-oxa-4,8-diazacyclododecane ([10]aneN(2)O) (1) with 1,3-bis(alpha-chloroacetamido)propane (2) and subsequent reduction of the diamide intermediate. The structure [Ni(L1)(ClO(4))](ClO(4)) (P2(1)/c (no. 14), a = 8.608(3), b = 16.618(3), c = 14.924(4) A, beta = 91.53(3) degrees converged at R = 0.050 (R(w) = 0.046) for 307 parameters using 2702 reflections with I > 2sigma(I). For the nickel(II) complex of the (monodeprotonated) precursor diamide ligand 14-oxa-1,4,8,11-tetraazabicyclo[9.5.3]nonadecane-3,9-dione (H(2)L2), [Ni(HL2)](ClO(4)) (Pbca (no. 61), a = 15.1590(3), b = 13.235(2), c = 18.0195(6) A), the structure converged at R = 0.045 (R(w) = 0.038) for 265 parameters using 1703 reflections with I > 3sigma(I). In the reduced system, the cyclam-based ligand adopts a trans-III configuration. The [Ni(L1)(ClO(4))](2+) ion is pseudooctahedral with the Ni-O(ether) 2.094(3) A distance shorter than the Ni-O(perchlorate) 2.252(4) A. The nickel(II) and nickel(III) complexes are six-coordinate in solution. Oxidation of [Ni(L1)(OH(2))](2+) with K(2)S(2)O(8) in aqueous media yielded an axial d(7) Ni(III) species (g( perpendicular) = 2.159 and g( perpendicular) = 2.024 at 77 K). The [Ni(L1)(solv)](2+) ion in CH(3)CN showed two redox waves, Ni(II/I) (an irreversible cathodic peak, E(p,c) = -1.53 V) and Ni(III/II) (E(1/2) = 0.85 V (reversible)) vs Ag/Ag(+). The complex [Ni(HL2)](ClO(4)) displays square-planar geometry with monodeprotonation of the ligand. The ether oxygen is not coordinated. Ni-O(3) = 2.651(6) A and Ni-O(3a) = 2.451(12) A, respectively. The Ni(III/II) oxidation at E(1/2) = 0.24 V (quasi-reversible) vs Ag/Ag(+) is considerably lower than the saturated system. The kinetics of Cl(-) substitution at [Ni(L1)(solv)](3+) are pH dependent. Detachment of the ether oxygen atom is proposed, with insertion of a protonated water molecule which deprotonates at a pK(a) more acidic than in the corresponding cyclam complex. Mechanistic implications are discussed.  相似文献   

5.
Dicationic ligands incorporating two 2,2'-bipyridine units and two imidazolium moieties, [1](2+) and [2](2+), form stable chelate complexes with Cu(II) and Cu(I) in acetonitrile solution. Each Cu(II) complex binds two X(-) ions according to two stepwise equilibria, the first involving the Cu(II) centre and the second involving the bis-imidazolium compartment. Cu(I) complexes are able to host only one NO(3)(-) ion in the bis-imidazolium cavity, while other anions induce demetallation. Thus, in the presence of one equivalent of NO(3)(-), the Cu(II)/Cu(I) redox change makes the anion translocate quickly and reversibly from one binding site to the other within the [Cu(II,I)(1)](4+/3+) system, as demonstrated by cyclic voltammetry and controlled-potential electrolysis experiments.  相似文献   

6.
The near-diffusion-controlled reactions of hydroxyl radical, hydrated electron, and hydrogen atom with platinum macrocyclic complex ions in aqueous media have been studied using pulse radiolysis in conjunction with UV-visible absorption and conductivity detection. The hydrated electron and hydrogen atom react with trans-[Pt(cyclam)(Cl)(2)](2+) where cyclam is 1,4,8,11-tetraazacyclotetradecane to yield platinum(III) transients that exhibit intense absorption peaks in the 280-300 nm region; however in the case of the H-atom, the reaction involves a competition between chloride abstraction and a minor process, suggested to be attack on the organic ligand. The platinum(III) products are kinetically labile toward loss of chloro ligands, but these reactions are reversible in the presence of added KCl. The reactions of hydroxyl radical with [Pt(cyclam)](2+) and with [Pt(tmc)](2+), where tmc is 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, lead to platinum(III) intermediates absorbing in the 250-300 nm region. Depending on the presence or absence of added KCl and on the pH, the platinum(III) cyclam systems can react to form a product(s) exhibiting absorption peaks near 330 and 455 nm, and this species is proposed to be a long-lived amidoplatinum(III) complex. In support of this proposal is the observation that the tmc system does not give rise to a similar visible-absorbing product. The interrelations of the cyclam-based transients through acid-base, chloro-substitution and water-elimination processes are discussed.  相似文献   

7.
Bicarbonate ion reacts with the dinuclear nickel(II) complex containing the taec ligand (taec = N,N',N' ',N' '-tetrakis(2-aminoethyl)-1,4,8,11-tetraazacyclotetradecane) in buffered aqueous solution to form the mu-eta(2),eta(2)-carbonate complex with a large effective binding constant for bicarbonate ion, log K(B) = 4.39 at pH = 7.4. In contrast, the dinuclear nickel(II) complex containing the o-xyl-DMC(2) ligand (o-xyl-DMC(2) = alpha,alpha'-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene) does not react with bicarbonate or carbonate ion in aqueous solution. In propylene carbonate, the reaction of [Ni(2)(o-xyl-DMC(2))](4+) with bicarbonate proceeds rapidly to form the mu-eta(1),eta(1)-carbonate complex. The structure of this carbonate complex has been determined by an X-ray diffraction study that confirms the mu-eta(1),eta(1)-carbonate binding mode. A mononuclear analogue of [Ni(2)(taec)](4+), [Ni(2,3,2-tetraamine)](2+) does not form a detectable mononuclear or dinuclear product with bicarbonate ion in aqueous solution, but [NiDMC](2+) (DMC = 5,7-dimethyl-1,4,8,11-tetraazacyclotetradecane) reacts slowly with carbonate ion in aqueous solution to form a 2:1 complex.  相似文献   

8.
As an extension of prior studies involving the linear quaterpyridine ligand, 5,5'-dimethyl-2,2':5',5':2',2'-quaterpyridine 1, the synthesis of the related expanded quaterpyridine derivatives 2 and 3 incorporating dimethoxy-substituted 1,4-phenylene and tetramethoxy-substituted 4,4'-biphenylene bridges between pairs of 2,2'-bipyridyl groups has been carried out via double-Suzuki coupling reactions between 5-bromo-5'-methyl-2'-bipyridine and the appropriate di-pinacol-diboronic esters using microwave heating. Reaction of 2 and 3 with selected Fe(II) or Ni(II) salts yields a mixture of both [M(2)L(3)](4+) triple helicates and [M(4)L(6)](8+) tetrahedra, in particular cases the ratio of the products formed was shown to be dependent on the reaction conditions; the respective products are all sufficiently inert to allow their chromatographic separation and isolation. Longer reaction times and higher concentrations were found to favour tetrahedron formation. The X-ray structures of solvated [Ni(2)(2)(3)](PF(6))(4), [(PF(6)) ? Fe(4)(2)(6)](PF(6))(7), [Fe(4)(3)(6)](PF(6))(8) and [Ni(4)(3)(6)](PF(6))(8) have been determined, while the structure of the parent Fe(II) cage in the series, [(PF(6)) ? Fe(4)(1)(6)](PF(6))(7), was reported previously. The internal volumes of the Fe(II) tetrahedral cages have been calculated and increase from 102 ?(3) for [Fe(4)(1)(6)](8+) to 227 ?(3) for [Fe(4)(2)(6)](8+) to 417 ?(3) for [Fe(4)(3)(6)](8+) and to an impressive 839 ?(3) for [Ni(4)(3)(6)](8+). The corresponding void volume in the triple helicate [Ni(2)(2)(3)](4+) is 29 ?(3).  相似文献   

9.
10.
The electrosynthesis of Rh(2)(dpf)(4)(R) where dpf is the N,N'-diphenylformamidinate anion and R = CH(3), C(2)H(5), C(3)H(7), C(4)H(9) or C(5)H(11) was carried out in THF containing 0.2 M tetra-n-butylammonium perchlorate (TBAP) and one of several alkyl iodides represented as RI. The initial step in the reaction involved a one-electron reduction of the Rh(2)(4+) unit in Rh(2)(dpf)(4) to its Rh(2)(3+) form followed by a homogeneous reaction involving electrogenerated [Rh(2)(dpf)(4)](-) and the alkyl iodide in solution to give Rh(2)(dpf)(4)(R). The homogeneously generated Rh(2)(5+) product was then immediately reduced by a second electron at the potential where [Rh(2)(dpf)(4)(R)](-) is generated, giving [Rh(2)(dpf)(4)(R)](-) which contains a Rh(2)(4+) center as a final product of an electrochemical ECE mechanism. The electrosynthesized [Rh(2)(dpf)(4)(CH(3))](-) derivative could be reoxidized to Rh(2)(dpf)(4)(CH(3)) on the reverse potential sweep and both forms of the CH(3) bonded derivative were in situ characterized by cyclic voltammetry combined with UV-visible and/or ESR spectroscopy. The reversible Rh(2)(4+/3+) process of Rh(2)(dpf)(4) is located at E(1/2) = -1.11 V in THF, 0.2 M TBAP while the electrogenerated Rh(2)(dpf)(4)(R) products are substantially easier to reduce, with E(p) values for the Rh(2)(5+/4+) couples ranging from -0.50 to -0.54 V vs. SCE depending upon the specific R group.  相似文献   

11.
Reactions of the precursors [Ni(macrocyclic ligand)](2+) with [W(CN)(8)](3-) afford two octacyanotungstate-based assemblies, (H(2)L(1))(0.5)[Ni(L(1))][W(CN)(8)]·2DMF·H(2)O (L(1) = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) (1) and [Ni(L(2))](3)[W(CN)(8)](2)·4H(2)O (L(2) = 3,10-dipropyl-1,3,5,8,10,12-hexaazacyclotetradecane) (2). Single crystal X-ray diffraction shows that 1 consists of anionic one-dimensional (1D) linear chains, while 2 is built of 2D graphite-like layers with (6, 3) topology. Magnetic studies reveal that both complexes exhibit metamagnetic behavior from the spin-canted antiferromagnet to the ferromagnet induced by field.  相似文献   

12.
A bis(ruthenium-bipyridine) complex bridged by 1,8-bis(2,2':6',2'-terpyrid-4'-yl)anthracene (btpyan), [Ru(2)(μ-Cl)(bpy)(2)(btpyan)](BF(4))(3) ([1](BF(4))(3); bpy = 2,2'-bipyridine), was prepared. The cyclic voltammogram of [1](BF(4))(3) in water at pH?1.0 displayed two reversible [Ru(II),Ru(II)](3+)/[Ru(II),Ru(III)](4+) and [Ru(II),Ru(III)](4+)/[Ru(III),Ru(III)](5+) redox couples at E(1/2)(1) = +0.61 and E(1/2)(2) = +0.80?V (vs. Ag/AgCl), respectively, and an irreversible anodic peak at around E = +1.2?V followed by a strong anodic currents as a result of the oxidation of water. The controlled potential electrolysis of [1](3+) ions at E = +1.60?V in water at pH?2.6 (buffered with H(3)PO(4)/NaH(2)PO(4)) catalytically evolved dioxygen. Immediately after the electrolysis of the [1](3+) ion in H(2)(16)O at E = +1.40?V, the resultant solution displayed two resonance Raman bands at nu = 442 and 824?cm(-1). These bands shifted to nu = 426 and 780?cm(-1), respectively, when the same electrolysis was conducted in H(2)(18)O. The chemical oxidation of the [1](3+) ion by using a Ce(IV) species in H(2)(16)O and H(2)(18)O also exhibited the same resonance Raman spectra. The observed isotope frequency shifts (Δnu = 16 and 44?cm(-1)) fully fit the calculated ones based on the Ru-O and O-O stretching modes, respectively. The first successful identification of the metal-O-O-metal stretching band in the oxidation of water indicates that the oxygen-oxygen bond at the stage prior to the evolution of O(2) is formed through the intramolecular coupling of two Ru-oxo groups derived from the [1](3+) ion.  相似文献   

13.
In the present study the interaction of Fe(II) and Ni(II) with the related expanded quaterpyridines, 1,2-, 1,3- and 1,4-bis-(5'-methyl-[2,2']bipyridinyl-5-ylmethoxy)benzene ligands (4-6 respectively), incorporating flexible, bis-aryl/methylene ether linkages in the bridges between the dipyridyl domains, was shown to predominantly result in the assembly of [M(2)L(3)](4+) complexes; although with 4 and 6 there was also evidence for the (minor) formation of the corresponding [M(4)L(6)](8+) species. Overall, this result contrasts with the behaviour of the essentially rigid 'parent' quaterpyridine 1 for which only tetrahedral [M(4)L(6)](8+) cage species were observed when reacted with various Fe(II) salts. It also contrasts with that observed for 2 and 3 incorporating essentially rigid substituted phenylene and biphenylene bridges between the dipyridyl domains where reaction with Fe(II) and Ni(II) yielded both [M(2)L(3)](4+) and [M(4)L(6)](8+) complex types, but in this case it was the latter species that was assigned as the thermodynamically favoured product type. The X-ray structures of the triple helicate complexes [H(2)O?Ni(2)(4)(3)](PF(6))(4)·THF·2.2H(2)O, [Ni(2)(6)(3)](PF(6))(4)·1.95MeCN·1.2THF·1.8H(2)O, and the very unusual triple helicate PF(6)(-) inclusion complex, [(PF(6))?Ni(2)(5)(3)](PF(6))(3)·1.75MeCN·5.25THF·0.25H(2)O are reported.  相似文献   

14.
Ou GC  Jiang L  Feng XL  Lu TB 《Inorganic chemistry》2008,47(7):2710-2718
The reactions of a racemic four-coordinated nickel(II) complex [Ni(alpha-rac-L)](ClO4)2 (containing equal amount of SS and RR enantiomers) with l- and d-phenylalanine in acetonitrile/water gave two less-soluble six-coordinated enantiomers of {[Ni( f-SS-L)(l-Phe)](ClO4)}n (Delta-1) and {[Ni(f- RR-L)(d-Phe)](ClO4)}n (Lambda-1), respectively. Evaporation the remaining solutions gave two six-coordinated diastereomers of {[Ni 3(f- RR-L)3(l-Phe)2(H 2O)](ClO4)4}n (a-2) and {[Ni3(f- SS-L)3(d-Phe)2(H2O)](ClO4)4}n (b-2), respectively (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, Phe(-) = phenylalanine anion). The reaction of [Ni(alpha-rac-L)](ClO4)2 with dl-Phe(-) gave a conglomerate of c-1; in which, the SS and RR enantiomers preferentially coordinate to l- and d-Phe(-) respectively to give a racemic mixture of Delta-1 and Lambda-1, and the spontaneous resolution occurs during the reaction, in which each crystal crystallizes to become enantiopure. Removing Phe(-) from Delta-1 and Lambda-1 using perchloric acid gave two enantiomers of [Ni(alpha-SS-L)](ClO4)2 (S-3) and [Ni(alpha-RR-L)](ClO4)2 (R-3). Dissolving S-3 and R-3 in acetonitrile gave two six-coordinated enantiomers of [Ni( f-SS-L)(CH3CN)2](ClO4)2 (S-4) and [Ni( f- RR-L)(CH3CN)2](ClO4)2 (R-4), while dissolving [Ni(alpha-rac-L)](ClO4)2 in acetonitrile gave a racemic twining complex [Ni(f-rac-L)(CH3CN)2](ClO4)2 (rac-4). Delta-1 and Lambda-1 belong to supramolecular stereoisomers, which are constructed via hydrogen bond linking of [Ni( f-SS-L)(l-Phe)](+) and [Ni(f-RR-L)(d-Phe)](+) monomers to form 1D homochiral right-handed and left-handed helical chains, respectively. The reaction of S-3 with d-Phe(-) gave {[Ni(f-SS-L)(d-Phe)](ClO4)}n (5), which shows a motif of a 1D hydrogen bonded zigzag chain instead of a 1D helical chain. Compound a-2/ b-2 contains dimers of [{Ni(f-RR-L)}2(l-Phe)(H2O)](3+)/[{Ni( f- SS-L)}2(d-Phe)(H2O)](3+) and 1D zigzag chains of {[Ni(f-RR-L)(l-Phe)](+)}n /{[Ni(f-SS-L)(d-Phe)](+) n . The homochiral nature of Delta-1/Lambda-1, a-2/b-2, S-3/R-3, and S-4/R-4 are confirmed by the results of circular dichroism (CD) spectra measurements.  相似文献   

15.
Mallon CT  Forster RJ  Keyes TE 《The Analyst》2011,136(23):5051-5057
The dissociation of a cobalt bisdiphenylterpyridine, [Co(biptpy)(2)](2+), guest at mixed (γ-CD-(py)(2))-alkanethiol layers (where γ-CD-(py)(2) is di-6(A), 6(B)- deoxy-6-(4-pyridylmethyl)amino- γ-cyclodextrin) formed on platinum electrodes is reported. Cyclic voltammetry (CV) shows reversible one-electron surface confined waves consistent with the Co(2/3+) couple bound at the interface. The quantity of [Co(biptpy)(2)](3+) reduced is found to be dependent on the scan rate employed, with greater amounts at higher scan rates. This behavior is in contrast to the CD guest ferrocene, which upon oxidation to the ferrocenium ion shows little charge associated with reduction even at elevated scan rates. Chronocoulometry was conducted to systematically vary the time spent oxidizing [Co(biptpy)(2)](2+) and to measure the resulting charge associated with the reduction of [Co(biptpy)(2)](3+). It is determined experimentally that as the pulse width increases, i.e. greater time spent in the oxidizing region, the amount of charge needed to reduce [Co(biptpy)(2)](3+) decreases dramatically. This decrease, along with the CV data, suggests strongly that the [Co(biptpy)(2)](3+) dissociates from the cavity. Significantly, this dissociation of the interfacial host-guest complex occurs on a much longer timescale (the order of seconds) compared to the oxidation of [Co(biptpy)(2)](2+) to [Co(biptpy)(2)](3+), which has been measured using high speed chronoamperometry to occur with a rate contant, k(0), of approximately 10(3) s(-1). The comparison of the timescale for dissociation of the interfacial complex and for electron transfer signifies that the electron transfer step occurs before dissociation, i.e. dissociation via an EC mechanism. The dissociation mechanism of [Co(biptpy)(2)](3+) is contrasted with that of the ferrocene/ferrocenium couple.  相似文献   

16.
The electrochemical oxidation of ruthenocene (1) in CH(2)Cl(2)/[NBu(4)]A, where A = [B(C(6)F(5))(4)](-) or [B(C(6)H(3)(CF(3))(2))(4)](-), gives the dimeric dication [(RuCp(2))(2)](2+), 2(2+), in equilibrium with the 17-electron ruthenocenium ion 1(+). At room temperature the rapid equilibrium accounts for the quasi-Nernstian cyclic voltammetry (CV) behavior (E(1/2) = 0.41 V vs FeCp(2), A = [B(C(6)F(5))(4)](-)). Direct electrochemical evidence for 2(2+) is seen by CV and by bulk electrolysis at 243 K. The bis(ruthenocenium) dication undergoes a highly irreversible two-electron cathodic reaction at E(pc) ca. 0 V. Anodic electrolysis of 1 at 243 K using [B(C(6)H(3)(CF(3))(2))(4)](-) as the supporting electrolyte, followed by cathodic electrolysis of 2(2+), regenerates half of the original 1. Precipitation of 2(2+) occurs when the supporting electrolyte is [B(C(6)F(5))(4)](-), allowing facile isolation of [(RuCp(2))(2)][B(C(6)F(5))(4)](2). A second, unidentified, anodic product also reduces to give back ruthenocene. Digital simulations of the CV curves of 1 at 243 K give a dimerization equilibrium constant of 9 x 10(4) M(-1) for K(eq) = [(RuCp(2))(2)(2+)]/2 [RuCp(2)](+) in CH(2)Cl(2)/0.1 M [NBu(4)][B(C(6)F(5))(4)].  相似文献   

17.
The evolution of nickel speciation during the successive preparation steps of Ni-SiO(2) catalysts is studied by UV-Vis-NIR, FT-IR, DTG, TPR and TEM. The study focuses on the effect of the number of chelating ligands in the precursor complexes [Ni(en)(x)(H(2)O)((6-2x))](2+) (en = ethylenediamine, x = 1, 2, 3) on the adsorption on silica, and on nickel speciation after thermal treatment. When the en:Ni ratio in solution increases from 1 to 3, the most abundant complex is [Ni(en)(H(2)O)(4)](2+) (64% of all Ni complexes), [Ni(en)(2)(H(2)O)(2)](2+) (81%) and [Ni(en)(3)](2+) (61%), respectively. Equilibrium adsorption of [Ni(en)(x)(H(2)O)((6-2x))](2+) on SiO(2) results in the selective grafting of [Ni(en)(H(2)O)(4)](2+) and [Ni(en)(2)(H(2)O)(2)](2+), through the substitution of two labile H(2)O ligands by two surface SiO(-) groups. The surface [Ni(en)(H(2)O)(2)(SiO)(2)] complex formed by the grafting of [Ni(en)(H(2)O)(4)](2+) onto silica tends to transform into NiO and nickel phyllosilicate after calcination, which consequently leads to large and heterogeneously distributed metallic Ni particles upon reduction. In contrast, [Ni(en)(2)(SiO)(2)], resulting from the grafting of [Ni(en)(2)(H(2)O)(2)](2+) onto silica, no longer has aqua ligands able to react with other nickel complexes or silicium-containing species. Calcination transforms these complexes into isolated Ni(2+) ions, which are reduced into small metallic Ni particles with a more homogeneous size distribution, even at higher Ni loading.  相似文献   

18.
Oxidation of the molybdate-linked pair having two quadruply bonded Mo(2)(4+) units, [Mo(2)(DAniF)(3)](2)(micro(2)-MoO(4)), (DAniF = N,N'-di-(p-anisyl)formamidinate) leads to the formation of a species consisting of three oxidized Mo(2)(5+) units connected by two micro(3)-MoO(4)(2-) dianions, {[Mo(2)(DAniF)(3)](3)(micro(3)-MoO(4))(2)}(2+). This cation displays overall D(3) point group symmetry due to a slight twisting of the three Mo(2)(5+) units about the threefold symmetry axis. This distortion removes all mirror symmetry but preserves all C(2) axes orthogonal to the unique C(3) axis. Cyclic voltammetry of {[Mo(2)(DAniF)(3)](3)(micro(3)-MoO(4))(2)}(2+) in CH(2)Cl(2) reveals three reversible one-electron redox processes, corresponding to successive reduction of each of the three Mo(2)(5+) units, with DeltaE(1/2) separations of 0.36 V and 0.41 V.  相似文献   

19.
20.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号