首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct a class of analytic solutions with two free parameters to the five-dimensional Einstein field equations, which represents the collision of two timelike 3-branes. We study the local and global properties of the spacetime, and find that spacelike singularities generically develop after the collision, due to the mutual focus of the two branes. Non-singular spacetime can be constructed only in the case where both of the two branes violate the energy conditions.  相似文献   

2.
We examine the effect of the thermal vacuum on the power spectrum of inflation by using the thermal field dynamics. We find that the thermal effect influences the CMB anisotropy at large length scale. After removing the divergence by using the holographic cutoff, we observe that the thermal vacuum explains well the observational CMB result at low multipoles. This shows that the temperature dependent factor should be considered in the study of power spectrum in inflation, especially at large length scale.  相似文献   

3.
We study the constraints on the dark energy model with constant equation of state parameter w = pip and the holographic dark energy model by using the weak gravity conjecture. The combination of weak gravity conjecture and the observational data gives tu 〈 -0.7 at the 3σ confidence level. The holographic dark energy model realized by a scalar field is in swampland.  相似文献   

4.
The observations of SNIa suggest that we live in the acceleration epoch when the densities of the cosmological constant term and matter are almost equal. This leads to the cosmic coincidence conundrum. As the explanation for this problem we propose the FRW model with dark matter and dark energy which interact each other exchanging energy. We show that the cubic correction to the Hubble law, measured by distant supernovae type Ia, probes this interaction. We demonstrate that influences between nonrelativistic matter and vacuum sectors are controlled by third and higher derivatives of the scale factor. As an example we consider flat decaying Λ(t)Λ(t) FRW cosmologies. We point out the possibility of measure of the energy transfer by the cubic and higher corrections to Hubble's law. The statistical analysis of SNIa data is used as an evidence of energy transfer. We find that there were the transfer from the dark energy sector to the dark matter one without any assumption about physics governing this process. We confront this hypothesis about the transfer with SNIa observations and find that the transfer the phantom and matter sector is admissible for Ωm,0=0.27Ωm,0=0.27. We also demonstrate that it is possible to differentiate between the energy transfer model and the variable coefficient equation of state model.  相似文献   

5.
We present a systematic way to derive the four-dimensional effective theories for warped compactifications with fluxes and branes in the ten-dimensional type IIB supergravity. The ten-dimensional equations of motion are solved using the gradient expansion method and the effective four-dimensional equations of motions are derived by imposing the consistency condition that the total derivative terms with respect to the six-dimensional internal coordinates vanish when integrated over the internal manifold. By solving the effective four-dimensional equations, we can find the gravitational backreaction to the warped geometry due to the dynamics of moduli fields, branes and fluxes.  相似文献   

6.
7.
We consider the anisotropic evolution of spatial dimensions and the stabilization of internal dimensions in the framework of brane gas cosmology. We observe that the bulk RR field can give an effective potential which prevents the internal subvolume from collapsing. For a combination of (D−3)(D3)-brane gas wrapping the extra dimensions and 4-form RR flux in the unwrapped dimensions, it is possible that the wrapped subvolume has an oscillating solution around the minimum of the effective potential while the unwrapped subvolume expands monotonically. The flux gives a logarithmic bounce to the effective potential of the internal dimensions.  相似文献   

8.
Brane inflationary universe model in the context of a Chaplygin gas equation of state is studied. General conditions for this model to be realizable are discussed. In the high-energy limit and by using a chaotic potential we describe in great details the characteristic of this model. The parameters of the model are restricted by using recent astronomical observations.  相似文献   

9.
We examined the interacting holographic dark energy model in a universe with spatial curvature. Using the near-flatness condition and requiring that the universe is experiencing an accelerated expansion, we have constrained the parameter space of the model and found that the model can accommodate a transition of the dark energy from ωD>−1ωD>1 to ωD<−1ωD<1.  相似文献   

10.
武星  朱宗宏 《中国物理快报》2008,25(4):1517-1520
The weak gravity conjecture is proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parameters of the Chaplygin-gas-type models. Our analysis indicates that the Chaplygin-gas-type models realized in quintessence field are in the swampland.  相似文献   

11.
A cosmological model dominated at the beginning by a dark radiation followed by a period of inflation is presented. This model is based on a Randall–Sundrum II type brane-world. Current observational data are used to fix the parameters associated to the dark radiation.  相似文献   

12.
Tachyonic inflationary universe model in the context of a Chaplygin gas equation of state is studied. General conditions for this model to be realizable are discussed. By using an effective exponential potential we describe in great details the characteristic of the inflationary universe model. The parameters of the model are restricted by using recent astronomical observations.  相似文献   

13.
In this Letter we have investigated the cosmological dynamics of non-locally corrected gravity involving a function of the inverse d'Alembertian of the Ricci scalar, f(−1R)f(−1R). Casting the dynamical equations into local form, we derive the fixed points of the dynamics and demonstrate the existence and stability of a one parameter family of dark energy solutions for a simple choice, f(−1R)∼exp(α−1R)f(−1R)exp(α−1R). The effective EoS parameter is given by, weff=(α−1)/(3α−1)weff=(α1)/(3α1) and the stability of the solutions is guaranteed provided that 1/3<α<2/31/3<α<2/3. For 1/3<α<1/21/3<α<1/2 and 1/2<α<2/31/2<α<2/3, the underlying system exhibits phantom and non-phantom behavior respectively; the de Sitter solution corresponds to α=1/2α=1/2. For a wide range of initial conditions, the system mimics dust like behavior before reaching the stable fixed point. The late time phantom phase is achieved without involving negative kinetic energy fields. A brief discussion on the entropy of de Sitter space in non-local model is included.  相似文献   

14.
Determining the mechanism behind the current cosmic acceleration constitutes a major question nowadays in theoretical physics. If the dark energy route is taken, this problem may potentially bring to light new insights not only in cosmology but also in high energy physics theories. Following this approach, we explore in this Letter some cosmological consequences of a new time-dependent parameterization for the dark energy equation of state (EoS), which is a well behaved function of the redshift z   over the entire cosmological evolution, i.e., z∈[−1,∞)z[1,). This parameterization allows us to divide the parametric plane (w0,w1)(w0,w1) in defined regions associated to distinct classes of dark energy models that can be confirmed or excluded from a confrontation with current observational data. By assuming a flat universe, a statistical analysis involving the most recent observations from type Ia supernovae, baryon acoustic oscillation peak, Cosmic Microwave Background shift parameter and Hubble evolution H(z)H(z) is performed to check the observational viability of the EoS parameterization here proposed.  相似文献   

15.
In this work we study a class of leptophilic dark matter models, where the dark matter interacts with the standard model particles via the U(1)LiLjU(1)LiLj gauge boson, to explain the e±e± excess in cosmic rays observed by ATIC and PAMELA experiments, and more recently by Fermi experiment. There are three types of U(1)LiLjU(1)LiLj models: (a) U(1)LeLμU(1)LeLμ, (b) U(1)LeLτU(1)LeLτ, and (c) U(1)LeLτU(1)LeLτ. Although ATIC or Fermi data are consistent with PAMELA data separately, ATIC and Fermi data do not agree with each other. We therefore aim to identify which of the three models can explain which data set better. We find that models (a) and (b) can give correct dark matter relic density and explain the ATIC and PAMELA data simultaneously recur to the Breit–Wigner enhancement. Whereas model (c) with a larger ZZ mass can explain Fermi and PAMELA data simultaneously. In all cases the model parameters are restricted to narrow regions. Future improved data will decide which set of data is correct and also help to decide the correct dark matter model.  相似文献   

16.
The fact that the energy densities of dark energy and matter are similar currently, known as the coincidence problem, is one of the main unsolved problems of cosmology. We present here a model in which a spatial curvature of the universe can lead to a transition in the present epoch from a matter dominated universe to a scaling dark energy dominance in a very natural way. In particular, we show that if the exponential potential of the dark energy field depends linearly on the spatial curvature density of a closed universe, the observed values of some cosmological parameters can be obtained assuming acceptable values for the present spatial curvature of the universe, and without fine tuning in the only parameter of the model. We also comment on possible variations of this model, and realistic scenarios in which it could arise.  相似文献   

17.
We show that, assuming the dispersion relation proposed recently by Ho?ava in the context of quantum gravity, radiation energy density exhibits a peculiar dependence on the scale factor; the radiation energy density decreases proportional to a−6a−6. This simple scaling can have an impact on cosmology. As an example, we show that the resultant baryon asymmetry as well as the stochastic gravity waves can be enhanced. We also discuss current observational constraint on the dispersion relation.  相似文献   

18.
In this Letter we study adiabatic and isocurvature perturbations in the frame of inflation with multiple sound speeds involved. We suggest this scenario can be realized by a number of generalized scalar fields with arbitrary kinetic forms. These scalars have their own sound speeds respectively, so the propagations of field fluctuations are individual. Specifically, we study a model constructed by two DBI type actions. We find that the critical length scale for the freezing of perturbations corresponds to the maximum sound horizon. Moreover, if the mass term of one field is much lighter than that of the other, the entropy perturbation could be quite large and so may give rise to a growth outside sound horizon. At cubic order, we find that the non-Gaussianity of local type is possibly large when entropy perturbations are able to convert into curvature perturbations. We also calculate the non-Gaussianity of equilateral type approximately.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号