首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss the cosmological evolution of a brane in the D(>6)D(>6)-dimensional black brane spacetime in the context of the Kaluza–Klein (KK) braneworld scheme, i.e., to consider KK compactification on the brane. The bulk spacetime is composed of two copies of a patch of D  -dimensional black three-brane solution. The near-horizon geometry is given by AdS5×S(D−5)AdS5×S(D5) while in the asymptotic infinity the spacetime approaches D-dimensional Minkowski. We consider the brane motion from the near-horizon region toward the spatial infinity, which induces cosmology on the brane. As is expected, in the early times, namely when the brane is located in the near-horizon region, the effective cosmology on the brane coincides with that in the second Randall–Sundrum (RS II) model. Then, the brane cosmology starts to deviate from the RS type one since the dynamics of KK compactified dimensions becomes significant. We find that the brane Universe cannot reach the asymptotic infinity, irrespectively of the components of matter on the brane.  相似文献   

2.
A new brane world in the sourced-Taub background is proposed. The gravity field equations in the internal source region and external vacuum region are investigated, respectively. We find that the equation of state for the effective dark energy of a dust brane in the source region can cross the phantom divide w=−1w=1. Furthermore, there is a drop on H(z)H(z) diagram, which presents a possible mechanism for the recent direct data of H(z)H(z).  相似文献   

3.
The dynamics of a tachyon attached to a Dvali, Gabadadze and Porrati (DGP) brane is investigated. Exponential potential and inverse power law potential are explored, respectively. The quasi-attractor behavior, for which the universe will eventually go into a phase similar to the slow-roll inflation, is discovered in both cases of exponential potential and inverse power law potential. The equation of state (EOS) of the virtual dark energy for a single scalar can cross the phantom divide in the branch θ=−1θ=1 for both potentials, while the EOS of the virtual dark energy for a single scalar cannot cross this divide in the branch θ=1θ=1.  相似文献   

4.
In this Letter we have studied a closed universe which a holographic energy on the brane whose energy density is described by ρ(H)=3c2H2ρ(H)=3c2H2 and we obtain an equation for the Hubble parameter. This equation gave us different physical behavior depending if c2>1c2>1 or c2<1c2<1 against of the sign of the brane tension.  相似文献   

5.
The theoretical construction of a traversable wormhole proposed by Morris and Thorne maintains complete control over the geometry by assigning both the shape and redshift functions, thereby leaving open the determination of the stress–energy tensor. This paper examines the effect of introducing the linear barotropic equation of state pr=ωρpr=ωρ on the theoretical construction. If either the energy density or the closely related shape function is known, then the Einstein field equations do not ordinarily yield a finite redshift function. If, however, the wormhole admits a one-parameter group of conformal motions, then both the redshift and shape functions exist provided that −3<ω<−13<ω<1. In a cosmological setting, the equation of state p=ωρp=ωρ, ω<−1ω<1, is associated with phantom dark energy, which is known to support traversable wormholes. The restriction −3<ω<−13<ω<1 that arises in the present wormhole setting can be attributed to the assumption of conformal symmetry.  相似文献   

6.
We study cosmological application of interacting holographic energy density in the framework of Brans–Dicke cosmology. We obtain the equation of state and the deceleration parameter of the holographic dark energy in a non-flat universe. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L=ar(t)L=ar(t). We find that the combination of Brans–Dicke field and holographic dark energy can accommodate wD=−1wD=1 crossing for the equation of state of noninteracting   holographic dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of wDwD to phantom regime can be more easily accounted for than when resort to the Einstein field equations is made.  相似文献   

7.
In this Letter, the cosmological dynamics of a modified holographic dark energy which is derived from the UV/IR duality by considering the black hole mass in higher dimensions as UV cutoff, is investigated in Dvali–Gabadadze–Porrati (DGP) brane world model. We choose Hubble horizon and future event horizon as IR cutoff respectively. And the two branches of the DGP model are both taken into account. When Hubble horizon is considered as IR cutoff, the modified holographic dark energy (HDE) behaves like an effect dark energy that modification of gravity in pure DGP brane world model acts and it can drive the expansion of the universe speed up at late time in ?=−1?=1 branch which in pure DGP model cannot undergo an accelerating phase. When future event horizon acts as IR cutoff, the equation of state parameter of the modified HDE can cross the phantom divide.  相似文献   

8.
Dynamical wave function collapse models entail the continuous liberation of a specified rate of energy arising from the interaction of a fluctuating scalar field with the matter wave function. We consider the wave function collapse process for the constituents of dark matter in our universe. Beginning from a particular early era of the universe chosen from physical considerations, the rate of the associated energy liberation is integrated to yield the requisite magnitude of dark energy around the era of galaxy formation. Further, the equation of state for the liberated energy approaches w→−1w1 asymptotically, providing a mechanism to generate the present acceleration of the universe.  相似文献   

9.
Using recent precision measurements of cosmological parameters, we re-examine whether these observations alone, independent of type Ia supernova surveys, are sufficient to imply the existence of dark energy. We find that best measurements of the age of the Universe t0t0, the Hubble parameter H0H0 and the matter fraction ΩmΩm strongly favor an equation of state defined by (w<−1/3w<1/3). This result is consistent with the existence of a repulsive, acceleration-causing component of energy if the Universe is nearly flat.  相似文献   

10.
In the framework of a single scalar field quintom model with higher derivative, we construct in this Letter a dark energy model of which the equation of state (EOS) w   crosses over the cosmological constant boundary. Interestingly during the evolution of the universe w<−1w<1 happens just for a period of time with a distinguished feature that w   starts with a value above −1, transits into w<−1w<1, then comes back to w>−1w>1. This avoids the big-rip jeopardy induced by w<−1w<1.  相似文献   

11.
We consider the anisotropic evolution of spatial dimensions and the stabilization of internal dimensions in the framework of brane gas cosmology. We observe that the bulk RR field can give an effective potential which prevents the internal subvolume from collapsing. For a combination of (D−3)(D3)-brane gas wrapping the extra dimensions and 4-form RR flux in the unwrapped dimensions, it is possible that the wrapped subvolume has an oscillating solution around the minimum of the effective potential while the unwrapped subvolume expands monotonically. The flux gives a logarithmic bounce to the effective potential of the internal dimensions.  相似文献   

12.
A cosmological model has been constructed with Gauss–Bonnet-scalar interaction, where the Universe starts with exponential expansion but encounters infinite deceleration, q→∞q and infinite equation of state parameter, w→∞w. During evolution it subsequently passes through the stiff fluid era, q=2q=2, w=1w=1, the radiation dominated era, q=1q=1, w=1/3w=1/3 and the matter dominated era, q=1/2q=1/2, w=0w=0. Finally, deceleration halts, q=0q=0, w=−1/3w=1/3, and it then encounters a transition to the accelerating phase. Asymptotically the Universe reaches yet another inflationary phase q→−1q1, w→−1w1. Such evolution is independent of the form of the potential and the sign of the kinetic energy term, i.e., even a non-canonical kinetic energy is unable to phantomize (w<−1)(w<1) the model.  相似文献   

13.
We examine observational constraints on the generalized Chaplygin gas (GCG) model for dark energy from the 9 Hubble parameter data points, the 115 SNLS Sne Ia data and the size of baryonic acoustic oscillation peak at redshift, z=0.35z=0.35. At a 95.4% confidence level, a combination of three data sets gives 0.67?As?0.830.67?As?0.83 and −0.21?α?0.420.21?α?0.42, which is within the allowed parameters ranges of the GCG as a candidate of the unified dark matter and dark energy. It is found that the standard Chaplygin gas model (α=1α=1) is ruled out by these data at the 99.7% confidence level.  相似文献   

14.
15.
We investigate the Ricci Dark Energy (RDE) in the braneworld models with a Gauss–Bonnet term in the Bulk. We analytically solve the generalized Friedmann equation on the brane and find that the universe will finally enter into a pure de Sitter spacetime in stead of the big rip that appears in the usual 4D Ricci dark energy model with parameter α<1/2α<1/2. We also consider the Hubble horizon as the IR cutoff in holographic dark energy model and find it cannot accelerate the universe as in the usual case without interacting.  相似文献   

16.
We discuss the thermodynamic properties of the Friedmann–Robertson–Walker universe with dark energy fluids labelled by ω=p/ρ<−1/3ω=p/ρ<1/3. Using the integrability condition, we show that the phantom phase of ω<−1ω<1 can still be thermodynamically allowed even when the temperature takes on negative values because in that case, there exists at least a condition of keeping physical values for p and ρ.  相似文献   

17.
We examined the interacting holographic dark energy model in a universe with spatial curvature. Using the near-flatness condition and requiring that the universe is experiencing an accelerated expansion, we have constrained the parameter space of the model and found that the model can accommodate a transition of the dark energy from ωD>−1ωD>1 to ωD<−1ωD<1.  相似文献   

18.
19.
In this note, we propose a new model of agegraphic dark energy based on the Károlyházy relation, where the time scale is chosen to be the conformal time η   of the Friedmann–Robertson–Walker (FRW) universe. We find that in the radiation-dominated epoch, the equation-of-state parameter of the new agegraphic dark energy wq=−1/3wq=1/3 whereas Ωq=n2a2Ωq=n2a2; in the matter-dominated epoch, wq=−2/3wq=2/3 whereas Ωq=n2a2/4Ωq=n2a2/4; eventually, the new agegraphic dark energy dominates; in the late time wq→−1wq1 when a→∞a, and the new agegraphic dark energy mimics a cosmological constant. In every stage, all things are consistent. The confusion in the original agegraphic dark energy model proposed in [R.G. Cai, Phys. Lett. B 657 (2007) 228, arXiv: 0707.4049 [hep-th]] disappears in this new model. Furthermore, Ωq?1Ωq?1 is naturally satisfied in both radiation-dominated and matter-dominated epochs where a?1a?1. In addition, we further extend the new agegraphic dark energy model by including the interaction between the new agegraphic dark energy and background matter. In this case, we find that wqwq can cross the phantom divide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号