首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report measurements and modelling of magnetic effects due to plastic deformation in 2.2% Si steel, emphasizing new tensile deformation data. The modelling approach is to take the Ludwik law for the strain-hardening stress and use it to compute the dislocation density, which is then used in the computation of magnetic hysteresis. A nonlinear extrapolation is used across the discontinuous yield region to obtain the value of stress at the yield point that is used in fitting Ludwik's law to the mechanical data. The computed magnetic hysteresis exhibits sharp shearing of the loops at small deformation, in agreement with experimental behavior. Magnetic hysteresis loss is shown to follow a Ludwik-like dependence on the residual strain, but with a smaller Ludwik exponent than applies for the mechanical behavior.  相似文献   

2.
Co/(Gd–Co) multilayers have been prepared by rf-sputtering and investigated by means of Transverse Magnetooptic Kerr Effect (TMOKE), SQUID and VSM magnetometry. The composition of amorphous Gd0.36Co0.64Gd0.36Co0.64 layers was chosen so that their saturation magnetization was dominated by Gd moments in all the temperature range. Co and Gd–Co layers formed a macroscopic ferrimagnetically coupled system displaying a compensation temperature. Complete magnetic moment compensation was found at such point. An inversion of TMOKE hysteresis loops and a divergent behaviour of coercivity were also observed. By changing the layers thickness it has been possible to control the magnetic characteristics of the Co/(Gd–Co) structures, in particular the compensation takes place at different temperatures.  相似文献   

3.
Understanding and controlling the anisotropy energy and its effects has proved vital to the development of soft magnetic materials and their applications. Indeed, acting on composition and structure and working out specific annealing treatments, a large variety of anisotropy-governed behaviors under DC and AC excitation can be obtained. These are discussed in the present paper, together with special problems arising in the characterization of anisotropic soft magnets and a few significant applications. It is stressed how features like JJ–HH loop shape, energy losses, and magnetoresistance effects can be controlled, in crystalline and amorphous materials, by the methods of induced anisotropy. The high-frequency behavior of these materials can be strongly affected by the anisotropy field via resonant absorption of energy. This calls for tradeoff between the values of permeability and resonance frequency.  相似文献   

4.
Magnetization reversal processes and domain structures have been studied in Mo(1 1 0)/Co(0 0 0 1)/Au(1 1 1) structures grown by molecular beam epitaxy on monocrystalline (11–20) sapphire substrates. Wedge-shaped samples with different Co thickness gradients relative to the Mo [0 0 1] direction were fabricated. Observation of the domain structure was performed at room temperature using Kerr microscopy in a Co thickness range varying from 5 to 50 nm, where the magnetization is oriented in the plane of the sample. A Co thickness-dependent coercivity field was determined through analysis of the domain wall position during the reversal process. A preferential orientation of magnetic domain walls was found, with the domains being needle-like. The orientation, as well as the size of the needles, depends on the Co thickness and the orientation of the magnetic field applied in the sample plane.  相似文献   

5.
The magnetic domain structure of the Fe double-layer on W(1 1 0) is investigated using a variable-temperature scanning tunneling microscope. At low temperature the well-known periodic magnetic stripe domain structure is identified via the observation of domain walls. This is done with a non-spin-polarized tip by taking advantage of a spin–orbit coupling effect. At higher temperature a reorientation to an in-plane easy axis is observed. The spin reorientation temperature is found to be coverage-dependent and it is determined for samples with a coverage of 1.5–2.2 atomic layers of Fe on W(1 1 0).  相似文献   

6.
An overview of wavefunction-based correlation methods generalised for the application to solids is presented. Those methods based on a preceding Hartree–Fock treatment explicitly calculate the many-body wavefunction in contrast to the density-functional theory which relies on the ground-state density of the system. This review focus on the so-called method of increments where the correlation energy of the solid is expanded in terms of localised orbitals or of a group of localised orbitals. The method of increments is applied to a great variety of materials, from covalent semiconductors to ionic insulators, from large band-gap materials like diamond to the half-metal αα-tin, from large molecules like fullerenes over polymers, graphite to three-dimensional solids. Rare-gas crystals where the binding is van der Waals like are treated as well as solid mercury, where the metallic binding is entirely due to correlation. Strongly correlated systems are examined and the correlation driven metal–insulator transition is described at an ab initio level.  相似文献   

7.
Ferromagnetic, semi-insulating Mn-alloyed ZnO films with a Curie temperature above 375 K have been grown by pulsed laser deposition on c-plane sapphire substrates. Antiferromagnetic coupling is revealed by temperature-dependent magnetization measurements. The antiferromagnetic coupling would be compatible with the observed weak ferromagnetism by assuming that the magnetic moments order antiferromagnetically but nonparallel (canted). We find a clear correlation between coercivity and mosaicity of the ferromagnetic Mn-alloyed ZnO films and explain it on the basis of a coercivity mechanism known from soft magnetic materials.  相似文献   

8.
In this paper, we examine the effects of the gravitational field on the dynamical evolution of the cavity-field entropy and the creation of the Schr?dinger-cat state in the Jaynes-Cummings model. We consider a moving two-level atom interacting with a single mode quantized cavity-field in the presence of a classical homogeneous gravitational field. Based on an su(2) algebra, as the dynamical symmetry group of the model, we derive the reduced density operator of the cavity-field which includes the effects of the atomic motion and the gravitational field. Also, we obtain the exact solution and the approximate solution for the system-state vector, and examine the atomic dynamics. By considering the temporal evolution of the cavity-field entropy as well as the dynamics of the Q-function of the cavity-field we study the effects of the gravitational field on the generation of the Schr?dinger-cat states of the cavity-field by using the Q-function, field entropy and approximate solution for the system-state vector. The results show that the gravitational field destroys the generation of the Schr?dinger-cat state of the cavity-field.  相似文献   

9.
In this paper we review studies on spin-dependent transport in systems containing ferromagnetic nanoparticles. In a tunnel junction with a nanometer-scale-island, the charging effect leads to an electric current blockade phenomenon in which a single electron charge plays a significant role in electron transport, resulting in single-electron tunneling (SET) properties such as Coulomb blockade and Coulomb staircase. In a tunnel junction with a ferromagnetic nano-island and electrode, it was expected that the interplay of spin-dependent tunneling (SDT) and SET, i.e., spin-dependent single-electron tunneling (SD-SET), would give rise to remarkable tunnel magnetoresistance (TMR) phenomena. We investigated magnetotransport properties in both sequential tunneling and cotunneling regimes of SET and found the enhancement and oscillation of TMR. The self-assembled ferromagnetic nanoparticles we have employed in this study consisted of a Co–Al–O granular film with cobalt nanoparticles embedded in an Al–O insulating matrix. A Co36Al22O42Co36Al22O42 film prepared by a reactive sputtering method produced a TMR ratio reaching 10% and superparamagnetic behavior at room temperature. The TMR ratio exhibited an anomalous increase at low temperatures but no indication of change with bias voltage. In Section 4, we show that the anomalous increase of the MR provided evidence for higher-order tunneling (cotunneling) between large granules through intervening small granules. We emphasize that the existence of higher-order tunneling is a natural consequence of the granular structure, since broad distribution of granule size is an intrinsic property of granular systems. In Section 5, we concentrate on SD-SET properties in sequential tunneling regimes. We fabricated two types of device structures with Co–Al–O film using focused ion-beam milling or electron-beam lithography techniques. One had a granular nanobridge structure: point-shaped electrodes separated by a very narrow lateral gap filled with the Co–Al–O granular film. The other had a current-perpendicular-to-plane (CPP) geometry structure: a thin Co–Al–O granular film sandwiched by ferromagnetic electrodes with the current flowing in the direction perpendicular to the film plane through a few Co particles. We found the enhancement and oscillation of TMR due to spin-dependent SET in sequential tunneling regimes. In Section 6, we report experimental evidence of a spin accumulation effect in Co nanoparticles leading to the oscillation of TMR with alternate sign changes. Furthermore, we discovered that the spin relaxation time in the nanoparticles is unprecedentedly enhanced up to the order of more than hundreds of nanoseconds, compared to that evaluated from the spin-diffusion length of ferromagnetic layers in previous CPP-GMR studies, i.e., the order of tens of picoseconds.  相似文献   

10.
11.
We have investigated the electronic structure and the magnetic properties of Co–Si alloy clusters using ab initio spin-polarized density functional calculations. The possible CoSi2, CoSi, and Co2Si phase clusters with oblique hexagon prism, icosahedron, and cuboctahedron structures are introduced. The CoSi phase cluster with icosahedron structure has the largest binding energy and amount of charge transfer. We found that HOMO-LUMO gap, magnetic moment, and spin polarization for the Co–Si alloy clusters with icosahedron structure increase with Co concentration. The Si atoms in the CoSi phase with icosahedron structure have negative magnetic moment.  相似文献   

12.
13.
The spin dynamics of the semiclassical Heisenberg model with uniaxial anisotropy, on the layered triangular lattice with antiferromagnetic coupling for both intralayer nearest neighbor interaction and interlayer interaction is studied both in the ordered phase and in the paramagnetic phase, using the Monte Carlo-molecular dynamics technique. The important quantities calculated are the full dynamic structure function S(q,ω)S(q,ω), the chiral dynamic structure function Schi(ω)Schi(ω), the static order parameter and some thermodynamic quantities. Our results show the existence of propagating modes corresponding to both S(q,ω)S(q,ω) and Schi(ω)Schi(ω) in the ordered phase, supporting the recent conjectures. Our results for the static properties show the magnetic ordering in each layer to be of coplanar 3-sublattice type deviating from 120°120° structure. In the presence of magnetic trimerization, however, we find the 3-sublattice structure to be weakened along with the tendency towards non-coplanarity of the spins, supporting the experimental conjecture. Our results for the spin dynamics are in qualitative agreement with those from the inelastic neutron scattering experiments performed recently.  相似文献   

14.
The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of cosmological data, including the most recent analysis by the WMAP team. We also discuss how future cosmological experiments are expected to be sensitive to neutrino masses well into the sub-eV range.  相似文献   

15.
16.
The magnetic behavior of soft magnetic materials is discussed with some emphasis on the connection between macroscopic properties and underlying micromagnetic energy aspects. It is shown that important conceptual gaps still exist in the interpretation of macroscopic magnetic properties in terms of the micromagnetic formulation. Different aspects of hysteresis modeling, power loss prediction and magnetic non-destructive evaluation are discussed in this perspective.  相似文献   

17.
18.
We investigate the analog of Landau quantization, for a neutral polarized particle in the presence of homogeneous electric and magnetic external fields, in the context of non-commutative quantum mechanics. This particle, possessing electric and magnetic dipole moments, interacts with the fields via the Aharonov–Casher and He–McKellar–Wilkens effects. For this model we obtain the Landau energy spectrum and the radial eigenfunctions of the non-commutative space coordinates and non-commutative phase space coordinates. Also we show that the case of non-commutative phase space can be treated as a special case of the usual non-commutative space coordinates.  相似文献   

19.
The magnetic properties of Co nanostructures and a Co monolayer on W(0 0 1) have been studied in the framework of density functional theory. Different geometries such as planar and three-dimensional clusters have been considered, with cluster sizes varying between 2 and 13 atoms. The calculations were performed using the real-space linear muffin-tin orbital method (RS-LMTO-ASA). With respect to the stability of the magnetic state, we predict an antiferromagnetic (AFM) structure for the ground state of the planar Co clusters and a ferromagnetic (FM) state for the three-dimensional clusters. For the three-dimensional clusters, one of the AFM arrangements leads to frustration due to the competing FM and AFM exchange interactions between different atoms in the cluster, and gives rise to a non-collinear state with energy close to that of the FM ground state. The relative role of the Co–Co and Co–W exchange interactions is also investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号