首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the ideal gas of fermions on a lattice at finite density for both naive and Wilson fermions. Comparing the thermodynamical quantities thus calculated with the known results in the continuum theory, we are led to propose a modification of the naive form of the lattice action, which is same for both the naive and the Wilson fermions. The thermodynamical quantities, calculated by using this form, are shown to have the correct continuum limit.  相似文献   

2.
In the present work a study is given for the evolution of a flat, isotropic and homogeneous Universe, which is filled with a causal bulk viscous cosmological fluid. We describe the viscous properties by an ultra‐relativistic equation of state, and bulk viscosity coefficient obtained from recent lattice QCD calculations. The basic equation for the Hubble parameter is derived by using the energy equation obtained from the assumption of the covariant conservation of the energy‐momentum tensor of the matter in the Universe. By assuming a power law dependence of the bulk viscosity coefficient, temperature and relaxation time on the energy density, we derive the evolution equation for the Hubble function. By using the equations of state from recent lattice QCD simulations and heavy‐ion collisions we obtain an approximate solution of the field equations. In this treatment for the viscous cosmology, no evidence for singularity is observed. For example, both the Hubble parameter and the scale factor are finite at t = 0, where t is the comoving time. Furthermore, their time evolution essentially differs from the one associated with non‐viscous and ideal gas. Also it is noticed that the thermodynamic quantities, like temperature, energy density and bulk pressure remain finite. Particular solutions are also considered in order to prove that the free parameter in this model does qualitatively influence the final results.  相似文献   

3.
QCD at finite temperature and density is becoming increasingly important for various experimental programmes, ranging from heavy ion physics to astro-particle physics. The non-perturbative nature of non-abelian quantum field theories at finite temperature leaves lattice QCD as the only tool by which we may hope to come to reliable predictions from first principles. This requires careful extrapolations to the thermodynamic, chiral and continuum limits in order to eliminate systematic effects introduced by the discretization procedure. After an introduction to lattice QCD at finite temperature and density, its possibilities and current systematic limitations, a review of present numerical results is given. In particular, plasma properties such as the equation of state, screening masses, static quark free energies and spectral functions are discussed, as well as the critical temperature and the QCD phase structure at zero and finite density.  相似文献   

4.
We employ the lattice QCD data on Taylor expansion coefficients to extend our previous parametrization of the equation of state to finite baryon density. When we take into account lattice spacing and quark mass dependence of the hadron masses, the Taylor coefficients at low temperature are equal to those of hadron resonance gas. Parametrized lattice equation of state can thus be smoothly connected to the hadron resonance gas equation of state at low temperatures.  相似文献   

5.
6.
I discuss lattice QCD calculations of the properties of strongly interacting matter at finite temperature, including the determination of the transition temperature Tc, equation of state, different static screening lengths and quarkonium spectral functions. The lattice data suggest that at temperatures above 2.0Tc many properties of the quark gluon plasma can be understood using weak coupling approach, although non-perturbative effects due to static magnetic fields are significant in some quantities.  相似文献   

7.
We consider the ideal gas limit of lattice Yang-Mills with fermions. Recently, such a system has been considered in great detail in the literature. We discuss possible finite lattice corrections to the energy density of the quarks and gluons due to the constraint of the quark-gluon gas being in colour singlet state. In the case of pure Yang-Mills theory at finite temperature, we find that Monte Carlo data agree very well with the asymptotically free gluon gas being a colour singlet. In the presence of quarks, in the quenched approximation, we find that Monte Carlo data seem to agree with a distribution where the quarks themselves form a colour singlet.  相似文献   

8.
9.
We discuss lattice simulations of the ground state of dilute neutron matter at next-to-leading order in chiral effective field theory. In a previous paper the coefficients of the next-to-leading-order lattice action were determined by matching nucleon-nucleon scattering data for momenta up to the pion mass. Here the same lattice action is used to simulate the ground state of up to 12 neutrons in a periodic cube using Monte Carlo simulations. We explore the density range from 2% to 8% of normal nuclear density and analyze the ground-state energy as an expansion about the unitarity limit with corrections due to finite scattering length, effective range, and P -wave interactions.  相似文献   

10.
Lineshapes and linewidth in angle-resolved photoemission spectra from solid surfaces contain a wealth of contributions from e.g. the photohole lifetime, the lifetime of the final state electron, and from their respective interactions with phonons and lattice imperfections. In addition, finite energy and angular resolution contribute to the experimentally observed linewidths. Using photoelectron spectra from bulk and surface state transitions on copper as an example, we discuss to which extent the various contributions may be distinguished experimentally. The results indicate that relevant spectroscopic information can be directly derived from such studies at very high resolution. This will lead beyond the kinematical analysis of photoelectron data in terms of band structures and may enable us to extract quantities which refer to the dynamical properties of the many-electron system.  相似文献   

11.
Symmetric nuclear matter at finite temperature is studied, within the Thermal Hartree Fock framework, employing lattice density waves and density dependent forces of the Skyrme type. The disappearance of clusters at finite temperature is described and its characteristics are quantiatively determined.  相似文献   

12.
Using Wang-Landau entropic sampling we study the Ising model in the framework of microcanonical ensemble (fixed magnetization). We are working for lattice size up to 1500×1500 in two dimensions and 100×100×100 in three dimensions. As we approach the coexistence curve from inside, varying temperature and keeping the magnetization constant, a first-order phase transition takes place for a temperature near the coexistence curve if the lattice size is large enough. We analyze various features of this transition as well as the scaling behavior of characteristic quantities and we compare our numerical results with existing theories.  相似文献   

13.
We investigate the possible restoration of chiral and axial symmetries across the phase transition at finite temperature and chemical potential, by analyzing the behavior of several physics quantities, such as the quark condensates and the topological susceptibility, the respective derivatives with respect to the chemical potential, and the masses of meson chiral partners. We discuss whether only chiral symmetry or both chiral and axial symmetries are restored and what the role of the strange quark is. The results are compared with recent lattice results.  相似文献   

14.
We investigate femtosecond laser ablation of aluminium using a hybrid simulation scheme. Two equations are solved simultaneously: one for the electronic system, which accounts for laser energy absorption and heat conduction, the other for the dynamics of the lattice where the ablation process takes place. For the electron-temperature a generalized heat-conduction equation is solved by applying a finite difference scheme. For the lattice properties, e.g. pressure, density or temperature, we use common molecular dynamics. Energy transfer between the subsystems is allowed by introducing an electron-phonon coupling term. This combined treatment of the electronic and atomic systems is an extension of the well known two-temperature model [Anisimov, Kapeliovich, Perel’man, Electron emission from metal surfaces exposed to ultra short laser pulses, JETP Lett. 39 (2)].  相似文献   

15.
The Bethe lattice spin glass revisited   总被引:2,自引:0,他引:2  
So far the problem of a spin glass on a Bethe lattice has been solved only at the replica symmetric level, which is wrong in the spin glass phase. Because of some technical difficulties, attempts at deriving a replica symmetry breaking solution have been confined to some perturbative regimes, high connectivity lattices or temperature close to the critical temperature. Using the cavity method, we propose a general non perturbative solution of the Bethe lattice spin glass problem at a level of approximation which is equivalent to a one step replica symmetry breaking solution. The results compare well with numerical simulations. The method can be used for many finite connectivity problems appearing in combinatorial optimization. Received 27 September 2000  相似文献   

16.
In this paper,we have calculated the SU(2) lattice gauge by the Monte Carlo method.For the finite temperature problem 83×4 lattice is used and for the zero temperature problem 84 lattice.From the calculations of the energy density,heat capacity and entropy density,the results indicate that there is a deconfinement phase transition when T/ΛL=40—50.  相似文献   

17.
18.
We review the method of blocking of topological defects from continuum to lattice as a nonperturbative tool to construct effective actions for these defects. The actions are formulated in the continuum limit, while the couplings of these actions can be derived from simple observables calculated numerically on lattices with a finite lattice spacing. We demonstrate the success of the method in deriving the effective actions for Abelian monopoles in the pure SU(2) gauge models in an Abelian gauge. In particular, we discuss the gluodynamics in three and four spacetime dimensions at zero and nonzero temperatures. Besides the action, the quantities of our interest are the monopole density, the magnetic Debye mass, and the monopole condensate.  相似文献   

19.
Within the Green’s function and equations of motion formalism it is possible to exactly solve a large class of models useful for the study of strongly correlated systems. Here, we present the exact solution of the one-dimensional extended Hubbard model with on-site U and first nearest neighbor repulsive V interactions in the presence of an external magnetic field h, in the narrow band limit. At zero temperature our results establish the existence of four phases in the three-dimensional space (U, n, h) – n is the filling – with relative phase transitions, as well as different types of charge ordering. The magnetic field may dramatically affect the behavior of thermodynamic quantities, inducing, for instance, magnetization plateaus in the magnetization curves, and a change from a single to a double-peak tructure in the specific heat. According to the value of the particle density, we find one or two critical fields, marking the beginning of full or partial polarization. A detailed study of several thermodynamic quantities is also presented at finite temperature.  相似文献   

20.
This paper presents a new continuum thermal stress theory for crystals based on interatomic potentials.The effect of finite temperature is taken into account via a harmonic model.An EAM potential for copper is adopted in this paper and verified by computing the effect of the temperature on the specific heat,coefficient of thermal expansion and lattice constant.Then we calculate the elastic constants of copper at finite temperature.The calculation results are in good agreement with experimental data.The thermal stress theory is applied to an anisotropic crystal graphite,in which the Brenner potential is employed.Temperature dependence of the thermodynamic properties,lattice constants and thermal strains for graphite is calculated.The calculation results are also in good agreement with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号