首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a novel method for base detection using a base-discriminating fluorescent (BDF) nucleoside. We developed BDF probes containing methoxybenzodeazaadenine MDA and methoxybenzodeazainosine MDI, which give strong fluorescence only when the base on the complementary strand is cytosine and thymine, respectively. Thus, the MDA- and MDI-containing ODNs can be used as a very effective BDF probe for the detection of single base alterations, such as SNPs and point mutations. The present method using BDF probes is a very powerful tool for SNP typing that does not require any enzymes and time-consuming steps, and can avoid hybridization errors. In addition, a combination of MDA- and MDI-containing BDF probes facilitates the T/C SNP typing of a heterozygous sample.  相似文献   

2.
A novel FRET based strategy for DNA sequence analysis utilising base-discriminating fluorescence (BDF) nucleoside, (Py)U/(2-Ant)U, as donor in the dual-labelled oligonucleotide probe is reported; a selective/specific emission from acceptor, was observed upon excitation at the donor, only when the opposite base of the "smart" fluorescently labeled BDF nucleoside, (Py)U/(2-Ant)U, is adenine on the complementary target sequence.  相似文献   

3.
Sequence specific fluorescence detection of double strand DNA   总被引:2,自引:0,他引:2  
Methods for the fluorescent detection of specific sequences of double strand DNA in homogeneous solution may be useful in the field of human genetics. A series of hairpin polyamides with tetramethyl rhodamine (TMR) attached to an internal pyrrole ring were synthesized, and the fluorescence properties of the polyamide-fluorophore conjugates in the presence and absence of duplex DNA were examined. We observe weak TMR fluorescence in the absence of DNA. Addition of >/=1:1 match DNA affords a significant fluorescence increase over equimolar mismatch DNA for each polyamide-TMR conjugate. Polyamide-fluorophore conjugates offer a new class of sensors for the detection of specific DNA sequences without the need for denaturation. The polyamide-dye fluorescence-based method can be used to screen in parallel the interactions between aromatic ring pairs and the minor groove of DNA even when the binding site contains a non-Watson-Crick DNA base pair. A ranking of the specificity of three polyamide ring pairs-Py/Py, Im/Py, and Im/Im-was established for all 16 possible base pairs of A, T, G, and C in the minor groove. We find that Im/Im is an energetically favorable ring pair for minor groove recognition of the T.G base pair.  相似文献   

4.
The DNA binding properties of fused heterocycles imidazo[4,5-b]pyridine (Ip) and hydroxybenzimidazole (Hz) paired with pyrrole (Py) in eight-ring hairpin polyamides are reported. The recognition profile of Ip/Py and Hz/Py pairs were compared to the five-membered ring pairs Im/Py and Hp/Py on a DNA restriction fragment at four 6-base pair recognition sites which vary at a single position 5'-TGTNTA-3', where N = G, C, T, A. The Ip/Py pair distinguishes G.C from C.G, T.A, and A.T, and the Hz/Py pair distinguishes T.A from A.T, G.C, and C.G, affording a new set of heterocycle pairs to target the four Watson-Crick base pairs in the minor groove of DNA.  相似文献   

5.
The discrimination of the four Watson-Crick base pairs by minor groove DNA-binding polyamides have been attributed to the specificity of three five-membered aromatic amino acid subunits, 1-methyl-1H-imidazole (Im), 1-methyl-1H-pyrrole (Py), and 3-hydroxy-1H-pyrrole (Hp) paired four different ways. The search for additional ring pairs that demonstrate DNA-sequence specificity has led us to a new class of 6-5 fused bicycle rings as minor groove recognition elements. The affinities and specificities of the hydroxybenzimidazole/pyrrole (Hz/Py) and hydroxybenzimidazole/benzimidazole (Hz/Bi) pairs for each of the respective Watson-Crick base pairs within the sequence context 5'-TGGXCA-3' (X = A, T, G, C) were measured by quantitative DNaseI footprinting titrations. The Hz/Py and Hz/Bi distinguish T.A from A.T. Hairpin polyamides containing multiple Hz/Py pairs were examined and were shown to mimic the Hp/Py pair with regard to affinity and specificity. Therefore, the Hz/Py pair may be considered a second-generation replacement for the Hp/Py pair.  相似文献   

6.
Metallo‐base pairs have been extensively studied for applications in nucleic acid‐based nanodevices and genetic code expansion. Metallo‐base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo‐base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T HgII T base pairs. Herein, we have determined a high‐resolution crystal structure of the second natural metallo‐base pair between pyrimidine bases C AgI C formed in an RNA duplex. One AgI occupies the center between two cytosines and forms a C AgI C base pair through N3 AgI N3 linear coordination. The C AgI C base pair formation does not disturb the standard A‐form conformation of RNA. Since the C AgI C base pair is structurally similar to the canonical Watson–Crick base pairs, it can be a useful building block for structure‐based design and fabrication of nucleic acid‐based nanodevices.  相似文献   

7.
In this study, we investigated the stability and structure of artificial base pairs that contain cyclohexyl rings. The introduction of a single pair of isopropylcyclohexanes into the middle of DNA slightly destabilized the duplex. Interestingly, as the number of the "base pairs" increased, the duplex was remarkably stabilized. A duplex with six base pairs was even more stable than one containing six A-T pairs. Thermodynamic analysis revealed that changes in entropy and not enthalpy contributed to duplex stability, demonstrating that hydrophobic interactions between isopropyl groups facilitated the base pairing, and thus stabilized the duplex. NOESY of a duplex containing an isopropylcyclohexane-methylcyclohexane pair unambiguously demonstrated its "pairing" in the duplex because distinct NOEs between the protons of cyclohexyl moieties and imino protons of both of the neighboring natural base pairs were observed. CD spectra of duplexes tethering cyclohexyl moieties also showed a positive-negative couplet that is characteristic of the B-form DNA duplex. Taken together, these results showed that cyclohexyl moieties formed base pairs in the DNA duplex without severely disturbing the helical structure of natural DNA. Next, we introduced cyclohexyl base pairs between pyrene and nucleobases as an "insulator" that suppresses electron transfer between them. We found a massive increase in the quantum yield of pyrene due to the efficient shielding of pyrene from nucleobases. The cyclohexyl base pairs reported here have the potential to prepare highly fluorescent labeling agents by multiplying fluorophores and insulators alternately into DNA duplexes.  相似文献   

8.
Metallo‐base pairs have been extensively studied for applications in nucleic acid‐based nanodevices and genetic code expansion. Metallo‐base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo‐base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T? HgII? T base pairs. Herein, we have determined a high‐resolution crystal structure of the second natural metallo‐base pair between pyrimidine bases C? AgI? C formed in an RNA duplex. One AgI occupies the center between two cytosines and forms a C? AgI? C base pair through N3? AgI? N3 linear coordination. The C? AgI? C base pair formation does not disturb the standard A‐form conformation of RNA. Since the C? AgI? C base pair is structurally similar to the canonical Watson–Crick base pairs, it can be a useful building block for structure‐based design and fabrication of nucleic acid‐based nanodevices.  相似文献   

9.
A solvatochromic fluorophore, PRODAN, has been used as a microenvironment-sensitive reporter. Based on the chemistry of PRODAN, we designed and synthesized four novel fluorescent nucleosides, PDNX (X = U, C, A, and G), to which a PRODAN fluorophore was attached at pyrimidine C5 or purine C8. The fluorescent nucleosides sensitively varied the Stokes shift values depending on the orientational polarizability of the solvent. The PDNX incorporated into DNA also changed the Stokes shift values depending on the DNA structure. In particular, the excitation spectrum of the PDNX-containing duplex shifted to a longer wavelength and gave a smaller Stokes shift value when the base opposite PDNX could form a Watson-Crick base pair with PDNX. A lower energy excitation of PDNX-containing DNA resulted in a strong fluorescence emission selective to the Watson-Crick pairing base. This unique photochemical character was applicable to the efficient typing of single-nucleotide polymorphisms of genes.  相似文献   

10.
We have developed novel alkanoylpyrene-labeled BDF nucleosides, AMPyU and MPyU. These nucleosides exhibit strong fluorescence emission at long wavelength that is highly sensitive to solvent polarity. BDF probes containing AMPyU selectively emit fluorescence only when the base opposite BDF nucleoside is adenine and act as effective reporter probes for homogeneous SNP typing.  相似文献   

11.
We have developed a new fluorescent DNA sensor containing two pyrene-labeled nucleobases, (Pet)G and (Py)C, and the fluorescence color was altered by the salt-induced B-Z DNA transition.  相似文献   

12.
Novel base-discriminating fluorescent (BDF) nucleoside, 8-fluorescence-labeled adenosine derivative (8PyA), was developed for the detection of thymine base on a target DNA. The BDF nucleoside was incorporated into oligodeoxynucleotides by post-synthetic modification. BDF probes containing 8PyA selectively emit fluorescence only when the base opposite BDF nucleoside is thymine and act as effective reporter probes for homogeneous SNP typing.  相似文献   

13.
Single nucleotide polymorphisms (SNPs) are base differences in the human genome. These differences are favorable markers for genetic factors including those associated with risks of complex diseases and individual responses to drugs. When two duplex DNAs with different types of SNPs are mixed and reannealed, the two novel heteroduplexes containing mismatched base pairs are formed in addition to the two initial perfectly matched homoduplexes. Heteroduplex analysis recognizing the newly formed mismatched base pairs is useful for SNP detection. Various strategies to detect the mismatched base pairs were devised due to the potential applications of SNPs. However, they were not always convenient and accurate. Here, we propose a novel strategy to detect the mismatched base pairs by the specific interaction between the Hg2+ ion and a T:T mismatched base pair and that between the Ag+ ion and a C:C mismatched base pair. UV melting indicated that the melting temperature of only the heteroduplexes with the T:T and C:C mismatched base pair specifically increased on adding the Hg2+ and Ag+ ion, respectively. Fluorescence resonance energy transfer analyses indicated that the intensity of fluorophore emission of only the fluorophore and quencher-labeled heteroduplexes with the T:T and C:C mismatched base pair specifically decreased on adding the Hg2+ and Ag+ ion, respectively. We propose that the addition of the metal ion could be a convenient and accurate strategy to detect the mismatched base pair in the heteroduplex. This novel strategy might make the heteroduplex analysis easy and eventually lead to better SNP detection.  相似文献   

14.
Wu F  Shao Y  Ma K  Cui Q  Liu G  Xu S 《Organic & biomolecular chemistry》2012,10(16):3300-3307
Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe.  相似文献   

15.
伍绍贵  冯丹 《物理化学学报》2016,32(5):1282-1288
DNA是大部分生物包括病毒的基因载体。DNA双螺旋链通过A=T和G≡C两种碱基对编码实现对遗传信息的存储。碱基对中的相互作用对DNA双螺旋链的稳定性起到重要作用,直接关系到基因的复制和转录。当前研究中,我们构建了四组不同结构的DNA双螺旋链,进行了总共4.3 μs的分子动力学模拟。通过伞形取样技术计算了DNA双螺旋链中碱基对分离的自由能曲线,并从分子尺度细节和相互作用能对自由能曲线进行解析。在碱基对G≡C的自由能曲线(PMF-PGC)上观察到三个峰,通过监测氢键数目的变化发现分别对应于G≡C三个氢键的断裂;而在A=T的自由能曲线(PMF-PAT)上只出现一个峰,说明A=T的两个氢键在分离过程中几乎同时断裂。PMF-PGC的总能垒比PMF-PAT高,主要是因为G≡C比A=T多一个氢键,更稳定。两条曲线的后段自由能仍然升高,而此时碱基对的氢键已断裂,这是DNA链骨架刚性所导致。我们还研究了碱基对稳定性受相邻碱基对的影响,发现邻近G≡C碱基对会增强A=T的稳定性, C≡G会削弱A=T的稳定性, T=A对A=T的影响较小。  相似文献   

16.
Stable and selective DNA base pairing by metal coordination was recently demonstrated with nucleotides containing complementary pyridine-2,6-dicarboxylate (Dipic) and pyridine (Py) bases (Meggers, E.; Holland, P. L.; Tolman; W. B.; Romesberg, F. E.; Schultz, P. G. J. Am. Chem. Soc. 2000, 122, 10714-10715). To understand the structural consequences of introducing this novel base pair into DNA we have solved the crystal structure of a duplex containing the metallo-base pair. The structure shows that the bases pair as designed, but in a Z-DNA conformation. The structure also provides a structural explanation for the B- to Z-DNA transition in this duplex. Further solution studies demonstrate that the metallo-base pair is compatible with Z- or B-DNA conformations, depending on the duplex sequence.  相似文献   

17.
Fluorescent nucleosides with modified nucleobases are useful tools for detecting nucleic acids and probing their structures and functions. Nucleobases are suitable for modification because 1) intrinsically light-absorbing nucleobases can be converted to fluorescent chromophores by simple chemical modification, 2) attaching substituents to nucleobases at appropriately selected positions does not inhibit base pairing or duplex formation, and 3) duplex formation and protein interactions affect the environment of nucleobases, causing changes in their fluorescence intensities and/or wavelengths. This review summarizes recent fluorescent nucleosides and their photophysical properties, such as absorption wavelength, emission wavelength, and fluorescence quantum yield together with their solvent dependency.  相似文献   

18.
The X-ray structure of a partly self-complementary peptide nucleic acid (PNA) decamer (H-GTAGATCACT-l-Lys-NH(2)) to 2.60 A resolution is reported. The structure is mainly controlled by the canonical Watson-Crick base pairs formed by the self-complementary stretch of four bases in the middle of the decamer (G(4)A(5)T(6)C(7)). One right- and one left-handed Watson-Crick duplex are formed. The two PNA units C(9)T(10) change helical handedness, so that each PNA strand contains both a right- and a left-handed section. The changed handedness in C(9)T(10) allows formation of Hoogsteen hydrogen bonding between C(9)T(10) and G(4)A(5) of a PNA strand in an adjacent Watson-Crick double helix of the same handedness. Thereby, a PNA-PNA-PNA triplex is formed. The PNA unit A(3) forms a noncanonical base pair with A(8) in a symmetry-related strand of opposite handedness; the base pair is of the A-A reverse Hoogsteen type. The structural diversity of this PNA demonstrates how the PNA backbone is able to adapt to structures governed by the stacking and hydrogen-bonding interactions between the nucleobases. The crystal structure further shows how PNA oligomers containing limited sequence complementarity may form complex hydrogen-bonding networks.  相似文献   

19.
The DNA probes (ODNs) containing a 2'-N-(pyren-1-yl)-group on the conformationally locked nucleosides [2'-N-(pyren-1-yl)carbonyl-azetidine thymidine, Aze-pyr (X), and 2'-N-(pyren-1-yl)carbonyl-aza-ENA thymidine, Aza-ENA-pyr (Y)], show that they can bind to complementary RNA more strongly than to the DNA. The Aze-pyr (X) containing ODNs with the complementary DNA and RNA duplexes showed an increase in the fluorescence intensity (measured at lambda em approximately 376 nm) depending upon the nearest neighbor at the 3'-end to X [dA ( approximately 12-20-fold) > dG ( approximately 9-20-fold) > dT ( approximately 2.5-20-fold) > dC ( approximately 6-13-fold)]. They give high fluorescence quantum yields (Phi F = 0.13-0.89) as compared to those of the single-stranded ODNs. The Aza-ENA-pyr (Y)-modified ODNs, on the other hand, showed an enhancement of the fluorescence intensity only with the complementary DNA (1.4-3.9-fold, Phi F = 0.16-0.47); a very small increase in fluorescence is also observed with the complementary RNA (1.1-1.7-fold, Phi F = 0.17-0.22), depending both upon the site of the Y modification introduced as well as on the chemical nature of the nucleobase adjacent to the modification site into the ODN. The fluorescence properties, thermal denaturation experiments, absorption, and circular dichroism (CD) studies with the X- and Y-modified ODNs in the form of matched homo- and heteroduplexes consistently suggested (i) that the orientation of the pyrene moiety is outside the helix of the nucleic acid duplexes containing a dT-d/rA base pair at the 3'-end of the modification site for both X and Y types of modifications, and (ii) that the microenvironment around the pyrene moiety in the ODN/DNA and ODN/RNA duplexes is dictated by the chemical nature of the conformational constraint in the sugar moiety, as well as by the nature of neighboring nucleobases. The pyrene fluorescence emission in both X and Y types of the conformationally restricted nucleotides is found to be sensitive to a mismatched base present in the target RNA: (i) The X-modified ODN showed a decrease ( approximately 37-fold) in the fluorescence intensity (measured at lambda em approximately 376 nm) upon duplex formation with RNA containing a G nucleobase mismatch (dT-rG pair instead of dT-rA) opposite to the modification site. (ii) In contrast, the Y-modified ODN in the heteroduplex resulted in a approximately 3-fold increase in the fluorescence intensity upon dT-rG mismatch, instead of matched dT-rA pair, in the RNA strand. Our data corroborate that the pyrene moiety is intercalated in the X-modified mismatched ODN/RNA (G mismatch) heteroduplex as compared to that of the Y-modified ODN/RNA (G mismatch) heteroduplex, in which it is located outside the helix.  相似文献   

20.
Recently, we reported the first artificial nucleoside for alternative DNA base pairing through metal complexation (J. Org. Chem. 1999, 64, 5002-5003). In this regard, we report here the synthesis of a hydroxypyridone-bearing nucleoside and the incorporation of a neutral Cu(2+)-mediated base pair of hydroxypyridone nucleobases (H-Cu-H) in a DNA duplex. When the hydroxypyridone bases are incorporated into the middle of a 15 nucleotide duplex, the duplex displays high thermal stabilization in the presence of equimolar Cu(2+) ions in comparison with a duplex containing an A-T pair in place of the H-H pair. Monitoring temperature dependence of UV-absorption changes verified that a Cu(2+)-mediated base pair is stoichiometrically formed inside the duplex and dissociates upon thermal denaturation at elevated temperature. In addition, EPR and CD studies suggested that the radical site of a Cu(2+) center is formed within the right-handed double-strand structure of the oligonucleotide. The present strategy could be developed for controlled and periodic spacing of neutral metallobase pairs along the helix axis of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号