首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectroscopic characterization of a Tm3+:SrGdGa3O7 crystal   总被引:2,自引:0,他引:2  
3 O7 crystal have been recorded at room temperature and at approximately 8 K. Room-temperature luminescence lifetimes of 1D2, 1G4, 3H4, and 3F4 states have been measured for Tm concentration ranging from [%at.]0.5 to [%at.]9. Based upon these data the crystal field splitting of luminescent states has been derived and radiative transitions rates have been evaluated. Strong self-quenching of luminescence originating in the 1G4 and 3H4 states has been found in this activator–host combination. Peak emission cross section of the potential laser transition at 1800 nm was determined to be 3.9×10-21 cm2 and the gain coefficient versus wavelength was estimated and discussed. Received: 14 April 1998/Revised version: 10 August 1998  相似文献   

2.
Ronghua Li  Liyun Zi  Chunzhi Shen  Wenji Wang 《Ionics》2005,11(1-2):146-151
The B-site substituted perovskite solid solution systems Li3xLa0.67−xREyTi1−2yPyO3 (RE=Sc, Y, Nd, Sm, Eu, Yb) have been investigated. Perovskite solid solutions formed in the range of x=0.10, y<0.10 for RE=Sc3+, Y3+, Yb3+, x=0.10, y≤0.05 for RE=Nd3+, Sm3+, Eu3+. Li0.3La0.57Nd0.05Ti0.9P0.05O3 has the highest bulk conductivity of 4.31×10−4 S·cm−1 and the highest total conductivity of 2.52×10−4 S·cm−1 at room temperature in all prepared compositions. The compositions have low activation energies of about 24–30 kJ/mol in the temperature ranges of 298–523 K. SEM studies showed that the sample made by solid-state reaction has a sphere-like morphology and a rough particle with particle size of about 50 μm. The research results also indicated that the reaction temperature decreases and the electrochemical stabilities of the titanate-based perovskite-type solid solutions are improved by using RE3+ and P5+ replaced Ti4+ on B-site in the Li3xLa0.67−xTiO3 parent.  相似文献   

3.
Abstract

The tetragonal distortions of local octahedral environments of Cr3+, Fe3+ and Gd3+ ions in Rb2CdF4, Cs2CdF4, RbCdF3 and CsCdF3 crystals have been studied by analyzing their EPR spectra. From the studies, it is found that the tetragonal distortions for Cr3+ and Fe3+ impurity ions, which substitute Cd2+ and have nearly the same ionic radius, are close to each other, whereas that for Gd3+ impurity ion, having a larger ionic radius, is larger than those for Cr3+ and Fe3+ ions in the same crystal. It appears that not only the impurity-ligand distance, but also the tetragonal distortions of impurity centres in crystals are closely related to the size of impurity.  相似文献   

4.
The vibrational mean amplitudes for bonded as well as for nonbonded distances have been evaluated for AsP3, SbP3, and PAs3 at temperatures : T = 0oK, T = 298.15oK and T=500 oK using recent vibrational data. The results have been briefly discussed.  相似文献   

5.
A reddish-orange phosphor, Ca3WO6:Sm3+, was synthesized by the convenient solid-state reaction method and characterized by X-ray diffraction (XRD). Photoluminescence properties and concentration quenching of Ca3WO6:Sm3+ phosphor have been discussed in the excitation and emission spectra. Ca3WO6:Sm3+ phosphor is able to generate a strong excitation peak, which matches the emission wavelength from near-UV LEDs. Energy transfer from Sm3+ to Eu3+ in Ca3WO6 host is observed and investigated in detail. The chromaticity coordinates of Ca3WO6:Sm3+ can be regulated to approach the NTSC standard values of red phosphor by codoping Eu3+ ions. The photoluminescence properties suggest that novel Ca3WO6:Sm3+, Eu3+ phosphor might have a potential application for near-UV LEDs.  相似文献   

6.
BaWO4:Eu3+,Bi3+ phosphors have been prepared by the conventional high-temperature solid-state reaction and chemical precipitation. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) technologies. When the phosphors are prepared by the high-temperature solidstate reaction, Bi3+ doping into BaWO4:Eu3+ can increase the emission intensity of 613 nm. However, maximum emission at about 595 nm was observed in Eu3+,Bi3+-doped BaWO4 phosphors prepared by the chemical precipitation. The decay constants (monitored at 595 and/or 613 nm) are within 45–100 s. The color purity of the Ba0:865WO4: Eu0:11,Bi0:025 phosphor (prepared by chemical precipitation) was 100%. The emission mechanism of Eu3+,Bi3+ in the BaWO4 phosphors is briefly discussed.  相似文献   

7.
Rare-earth sesquifluorides with no absorption in visible spectral region, such as LaF3, GdF3, LuF3, YF3, ScF3, are the topic of intense study as a host for luminescence materials. However, except Nd:LaF3, they are not studied as a host for laser materials. The main obstacle troubling further study of GdF3, LuF3, YF3, ScF3 single crystal is the fact that there is first-order phase transition (LaF3 type↔beta-YF3 type for GdF3, alpha-YF3 type↔beta-YF3 type for the rest) between the room and melting temperature.To prevent the phase transition, first of all, we have tried to make solid solution between GdF3 and YF3 in such a way that the average cation radii can be shifted to the size that does not have phase transition. Ce3+ perturbed luminescence was observed in the Ce- and Sr-codoped GdF3-YF3 system. Similar solid solution concept was applied to the combination between GdF3 and YbF3. The emission spectrum of Yb3+ that exhibits broad bands around 1 μm was observed. Room temperature up-conversion luminescence spectra of Pr3+-doped Gd1−xYbxF3 were studied and visible emission from Pr3+ was obtained under infrared laser pumping in the Yb3+ broad absorption band at 935.5 nm.  相似文献   

8.
Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and near infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm^3+: ^1D2 →^3F4, ^1G4 →^3H6, ^1G4 →^3F4, and ^3H4 →^3H6, respectively, are observed. Due to the sensitization of Yb^3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb^3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.  相似文献   

9.
Nd3+, Tm3+ and Yb3+ co-doped NaYF4 upconversion (UC) material was synthesized by the hydrothermal method. The structure of the sample was characterized by the X-ray diffraction, and its UC luminescence properties were investigated in detail. Under the 980 nm semiconductor laser excitation, its UC spectra exhibited distinct emission peaks at 451 nm, 475 nm and 646 nm respectively. On the basis of the comparison of UC spectra between NaYF4:Nd3+,Tm3+,Yb3+ and NaYF4:Tm3+,Yb3+, it was indicated that the existence of Nd3+ ion enhanced the blue emission intensity. The law of luminescence intensity versus pump power proved that the blue emission at 475 nm, and the red emission at 646 nm were the two-photon processes, while the blue emission at 451 nm was a three-photon process.  相似文献   

10.
Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800°C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV–Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer’s method and Williamson–Hall plots and are found to be in the ranges 40–60 nm and 30–80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at ~590, 612 and 625 nm, which are due to the transitions 5D07F0, 5D07F2 and 5D07F3 of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s2→6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380°C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.  相似文献   

11.
Excitation functions for the 56Fe(α, γ0)60Ni and 56Fe(α, γ1)60Ni reactions have been measured at 90° to the beam direction over the bombarding energy range 8.0–17.6 MeV. Gamma-ray angular distributions were measured at ten bombarding energies. Excitation functions for the 59Co(p, γ0)60Ni and 59Co(p, γ1)60Ni reactions were measured over the range Ex = 16.58–16.92 MeV and compared with the (α, γ) data. The angular distribution data indicate that the (α, γ0) and (α,γ1) reactions proceed through 1, and 1 and 3 states, respectively. The (α, γ) excitation functions are discussed with respect to isospin splitting of the 60Ni giant dipole resonance. The fine structure observed in the excitation functions is shown to be most probably due to Ericson fluctuations. The gross (α, γ) cross sections are shown to be in reasonable agreement with the results of calculations made using the theory of Hauser and Feshbach assuming excitation of the giant dipole resonance.  相似文献   

12.
Ai-Jie Mao 《Molecular physics》2013,111(8):1033-1038
The local lattice structure and EPR, optical spectra for Cr3+ doped in RbCdF3 crystal have been studied by diagonalizing the complete energy matrices. The results show that the local structure of the Cr3+ ions in RbCdF3 exhibits a compressed distortion at the trigonal and tetragonal sites. The compressed distortion can be ascribed to the fact that the radius of Cr3+ ion is smaller than that of Cd2+ ion, and therefore Cr3+ ion will draw the fluorin ligands inwards. The variational ranges of the local structural parameters for Cr3+ doped in RbCdF3 crystal R =?1.9491 Å ~?1.9814 Å, θ?= 55.234° ~?55.286° at the trigonal site and R 1 =?1.8617 Å ~?1.8928 Å, R 2 =?1.9527 Å ~?1.9851 Å at tetragonal site are obtained respectively, and the EPR and optical spectra agree well with the experimental results.  相似文献   

13.
Yb3+/Dy3+ co-doped Al2O3 nanopowders have been prepared by the non-aqueous sol-gel method and their up- conversion photoluminescence spectra are measured under excitation by 980-nm semiconductor laser. The results show that there are comparatively abundant spectra of up-conversion emissions centered at 378, 408, 527 and 543, and 663 nm, corresponding to 4G9/26H13/2, 4G9/26H11/2, 4I15/26H13/2, and 4F9/26H11/2 transitions of Dy3+, respectively. Two-photon and three-photon processes are involved in ultraviolet, violet, green, and red up-conversion emissions. The energy transition between Yb3+ and Dy3+ is discussed.  相似文献   

14.
A. H. Ahmad  A. K. Arof 《Ionics》2004,10(3-4):200-205
Different amounts of Li3PO4 were mixed to a fixed ratio of LiI:Li2WO4, ground and pelletised before subjected to sintering at 70°C for 7 days. XRD shows that the product formed after sintering process is most likely Li6P4W8O32 due to peaks present at 10.6°, 22.4°, 24.0°, 24.4, 26.2°, 32.4° and 34.0°. Conductivity studies show that the sample with 25 wt.% Li3PO4 exhibits the highest room temperature conductivity of 3.42×10−3 Scm−1. Conductivity is expected to occur through channel-like structures which could have formed due to corner or edge sharing of polyhedra. FTIR studies have shown the existence of WO4 tetrahedra and WO6 octahedral at 850 cm−1 and 952 cm−1, and phosphate tetrahedral at 564 cm−1, 700 cm−1, 890 cm−1 and 1030 cm−1.  相似文献   

15.
A Eu3+, Tb3+ codoped amorphous calcium silicate phosphor was prepared by heating a Eu3+, Tb3+ codoped calcium silicate hydrate phosphor formed by liquid-phase reaction for 30 min at 900 °C. The excitation peak wavelength of the resulting phosphor was 379 nm and the emission peak wavelengths were at 542 nm, attributed to the 5D47F5 transition of Tb3+, and at 613 mm, attributed to the 5D07F1 transition of Eu3+. The intensity ratio of the two peaks could be freely controlled by varying the Eu/Tb atomic ratio of the Eu3+, Tb3+ codoped amorphous calcium silicate phosphor, allowing light to be emitted over a wide range from green to red. It was clarified that electron transfer from Tb3+ to Eu3+ is occurring.  相似文献   

16.
NaGd(WO4)2:Yb3+, Ho3+ single crystals have been grown by the Czochralski technique along the (0 0 1) orientation. Conversion of the infrared (IR) radiation at 980 nm into the visible emission in NaGd(WO4)2 crystals containing several different concentrations of Yb3+ and Ho3+ has been investigated. The NaGd(WO4)2: 8 at. % Yb3+, 4 at. % Ho3+ system exhibits intense red upconverted emission originating from the 5F5 level. The upconversion mechanism in a Ho3+-Yb3+ system under near infrared excitation is discussed. It is concluded that the green emission is excited by energy transfers from Yb3+ to Ho3+, whereas excited state absorption is involved in the excitation of red emission. The emission cross-section of the 5F55I8 transition at about 660 nm was estimated by using the Füchtbauer–Ladengurg formula. PACS 78.55.Hx; 78.20.-e  相似文献   

17.
林秀华  江炳熙 《中国物理》2000,9(9):689-694
Seven absorption group-bands (1D2, 1G4, 3F2, 3F3, 3H4, 3H5, 3F4) of Tm3+ in YVO4 single crystals have been observed in the orientation absorption spectra recorded in the spectral range from 200 to 4000 nm at 300K. The integrated absorption cross section for each group-band was accurately evaluated. On the assumption that the anisotropy of this uni-axial crystal is small, the Judd-Ofelt theory was extended for the calculation of 4f-4f transition intensities of Tm3+ in YVO4. Two sets of phenomenological intensity parameters were derived from a least-squares-fit procedure. For c-axis cut sample we have Ω2=10.18 (10-20cm2), Ω4=1.96 (10-20cm2), Ω6=0.75 (10-20cm2).For a-axis cut sample we have Ω2=8.20 (10-20cm2), Ω4=2.47 (10-20cm2), Ω6=0.91 (10-20cm2). The anisotropy of the optical absorption intensities of Tm3+:YVO4 was theoretically analyzed in detail.  相似文献   

18.
The S3 radical anion is observed in several systems: non‐aqueous polysulfides solutions, doped alkali halides, ultramarine pigments (UP) for which S3 is the blue chromophore and S2 is the yellow one and pigments of zeolite 4A structure. The S3 ion has C2V symmetry, and therefore its three vibrational modes should be observed in the Raman and in IR spectra. In resonance Raman spectroscopy, only the symmetric stretching mode ν1 and the bending mode ν2 have been observed, whereas the anti‐symmetric stretching mode ν3 has never been observed whatever the system. In this work, we confirm that ν3 is not observed in solutions with resonance Raman spectroscopy. However, our investigation of several blue UP, with various concentrations of S2, shows that there is a superposition of two bands at ca 590 cm−1: the first is assigned to ν (S2) and the second to ν3 (S3). With the 457.9 nm excitation line, for which the resonance conditions are simultaneously fulfilled for S2 and S3, the band at ca 590 cm−1 is the sum of the contributions of both ν (S2) and ν3 (S3) vibrations, while, with the 647.1 nm line, which only satisfies the resonance conditions of S3, the band at ca 584 cm−1 must be assigned only to ν3 (S3). Furthermore, ν3 (S3) is observed in green UP and in pigments of zeolite structure. The ν3 vibration of S3, which is observed neither in polysulfide solutions nor in doped alkali halides in resonance Raman conditions, can therefore be observed when this species is inserted into the β‐cages of the sodalite or of the zeolite 4A structures. So, the band at ca 590 cm−1 cannot always be assigned to S2 in these systems. This implies that the concentration of S2 in UP must be reconsidered. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The optical absorption and emission spectra of two different Ho3+ doped mixed alkali chloroborate glasses have been studied in the ultraviolet-visible near-infrared regions. Various spectroscopic parameters like Racah (E1, E2, and E3), spin orbit (ξ4f), and configuration interaction (α) parameters have been calculated. From the measured spectral intensities of the various absorption bands of Ho3+ ion, the Judd–Ofelt intensity parameters (Ω2, Ω4, and Ω6) have been evaluated and covalency was studied as a function of x in the glass matrices. Using these parameters, radiative transition probabilities, radiative lifetimes, branching ratios, and integrated absorption cross-sections have been calculated and reported for certain excited states of Ho3+ ion. From the emission spectra, stimulated emission cross-sections are determined for the emission transitions, 5F4, 5S2?→?5I8, and 5F5?→?5I8 in these two mixed alkali chloroborate glasses. An attempt has been made to throw some light on the environment of Ho3+ ions in these glass systems by studying the variation in various spectroscopic parameters.  相似文献   

20.
Up-conversion phosphors BaLa2ZnO5 co-doped with Ho3+/Yb3+ were synthesized by high temperature solid-state reaction method. The phase composition of the phosphors was characterized by X-ray diffraction (XRD). The structure of BaLa2ZnO5: 0.75% Ho/15% Yb phosphor was refined by the Rietveld method and results showed the decreased unit cell parameters and cell volume after doping Ho3+ and Yb3+, indicating Ho3+ and Yb3+ have successfully replaced La3+. Under the excitation of 980 nm diode laser, the strong green and weak red up-conversion emissions centered at 548 nm, 664 nm and 758 nm were observed, which originating from 5S2, 5F25I8, 5F45I8 and 5S2, 5F25I7 transitions of Ho3+ ions, respectively. The optimum doping concentrations of Ho3+ and Yb3+ were determined to be 0.75% and 15%, and the corresponding Commission International de L'Eclairage (CIE) coordinates are calculated to be x=0.298 and y=0.692. The related UC mechanism of Ho3+/Yb3+ co-doped BaLa2ZnO5 depending on pump power was studied in detail. The results indicate that BaLa2ZnO5: Ho3+/Yb3+ can be an effective candidate for up-conversion yellowish-green light emitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号