首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The underwater sound localization acuity of harbor seals (Phoca vitulina) was measured in the horizontal plane. Minimum audible angles (MAAs) of pure tones were determined as a function of frequency from 0.2 to 16 kHz for two seals. Testing was conducted in a 10-m-diam underwater half circle using a right/left psychophysical procedure. The results indicate that for both harbor seals, MAAs were large at high frequencies (13.5 degrees and 17.4 degrees at 16 kHz), transitional at intermediate frequencies (9.6 degrees and 10.1 degrees at 4 kHz), and particularly small at low frequencies (3.2 degrees and 3.1 degrees at 0.2 kHz). Harbor seals seem to be able to utilize both binaural cues, interaural time differences (ITDs) and interaural intensity differences (IIDs), but a significant decrease in the sound localization acuity with increasing frequency suggests that IID cues may not be as robust as ITD cues under water. These results suggest that the harbor seal can be regarded as a low-frequency specialist. Additionally, to obtain a MAA more representative of the species, the horizontal underwater MAA of six adult harbor seals was measured at 2 kHz under identical conditions. The MAAs of the six animals ranged from 8.8 degrees to 11.7 degrees , resulting in a mean MAA of 10.3 degrees .  相似文献   

2.
Auditory brainstem response (ABR) and standard behavioral methods were compared by measuring in-air audiograms for an adult female harbor seal (Phoca vitulina). Behavioral audiograms were obtained using two techniques: the method of constant stimuli and the staircase method. Sensitivity was tested from 0.250 to 30 kHz. The seal showed good sensitivity from 6 to 12 kHz [best sensitivity 8.1 dB (re 20 microPa2 x s) RMS at 8 kHz]. The staircase method yielded thresholds that were lower by 10 dB on average than the method of constant stimuli. ABRs were recorded at 2, 4, 8, 16, and 22 kHz and showed a similar best range (8-16 kHz). ABR thresholds averaged 5.7 dB higher than behavioral thresholds at 2, 4, and 8 kHz. ABRs were at least 7 dB lower at 16 kHz, and approximately 3 dB higher at 22 kHz. The better sensitivity of ABRs at higher frequencies could have reflected differences in the seal's behavior during ABR testing and/or bandwidth characteristics of test stimuli. These results agree with comparisons of ABR and behavioral methods performed in other recent studies and indicate that ABR methods represent a good alternative for estimating hearing range and sensitivity in pinnipeds, particularly when time is a critical factor and animals are untrained.  相似文献   

3.
The goal of this research was to determine when harbor seal pup vocalizations become sufficiently distinctive to allow individual recognition. A total of 4593 calls were analyzed from 15 captive pups. Nineteen were harsh, broadband, staccato calls used in an aggressive context. The rest were tonal "mother attraction calls," having an inverted "v"- or "u"-shaped spectrogram with harmonics and a fundamental frequency around 200-600 Hz. Calls were individually distinctive even in pups less than 2 weeks old, suggesting that mothers may be able to recognize pup vocalizations at this early age. Classification rates from discriminant function analysis were generally comparable to those of other phocids and less than in otariids, supporting the theory that recognition is more highly developed in otariids. Significant differences were found between male and female pup calls, and there were significant interactions between pup sex and age. The results of this study should be interpreted with caution until the findings are verified in wild harbor seal pups.  相似文献   

4.
Equal-loudness functions describe relationships between the frequencies of sounds and their perceived loudness. This pilot study investigated the possibility of deriving equal-loudness contours based on the assumption that sounds of equal perceived loudness elicit equal reaction times (RTs). During a psychoacoustic underwater hearing study, the responses of two young female harbor seals to tonal signals between 0.125 and 100 kHz were filmed. Frame-by-frame analysis was used to quantify RT (the time between the onset of the sound stimulus and the onset of movement of the seal away from the listening station). Near-threshold equal-latency contours, as surrogates for equal-loudness contours, were estimated from RT-level functions fitted to mean RT data. The closer the received sound pressure level was to the 50% detection hearing threshold, the more slowly the animals reacted to the signal (RT range: 188-982 ms). Equal-latency contours were calculated relative to the RTs shown by each seal at sound levels of 0, 10, and 20 dB above the detection threshold at 1 kHz. Fifty percent detection thresholds are obtained with well-trained subjects actively listening for faint familiar sounds. When calculating audibility ranges of sounds for harbor seals in nature, it may be appropriate to consider levels 20 dB above this threshold.  相似文献   

5.
6.
It is unclear how well harbor porpoises can locate sound sources, and thus can locate acoustic alarms on gillnets. Therefore the ability of a porpoise to determine the location of a sound source was determined. The animal was trained to indicate the active one of 16 transducers in a 16-m-diam circle around a central listening station. The duration and received level of the narrowband frequency-modulated signals (center frequencies 16, 64 and 100 kHz) were varied. The animal's localization performance increased when the signal duration increased from 600 to 1000 ms. The lower the received sound pressure level (SPL) of the signal, the harder the animal found it to localize the sound source. When pulse duration was long enough (approximately 1 s) and the received SPLs of the sounds were high (34-50 dB above basic hearing thresholds or 3-15 dB above the theoretical masked detection threshold in the ambient noise condition of the present study), the animal could locate sounds of the three frequencies almost equally well. The porpoise was able to locate sound sources up to 124 degrees to its left or right more easily than sounds from behind it.  相似文献   

7.
Toneburst-evoked auditory brainstem responses (ABRs) were recorded in a captive subadult male leopard seal. Three frequencies from 1 to 4 kHz were tested at sound levels from 68 to 122 dB peak equivalent sound pressure level (peSPL). Results illustrate brainstem activity within the 1-4 kHz range, with better hearing sensitivity at 4 kHz. As is seen in human ABR, only wave V is reliably identified at the lower stimulus intensities. Wave V is present down to levels of 82 dB peSPL in the right ear and 92 dB peSPL in the left ear at 4 kHz. Further investigations testing a wider frequency range on seals of various sex and age classes are required to conclusively report on the hearing range and sensitivity in this species.  相似文献   

8.
Two echolocation experiments are described. They were conducted on the same harbor porpoise housed in a sea pen, one year apart at Neeltje Jans, The Netherlands. The aims were to determine the target detection ability of an echolocating harbor porpoise, with the ultimate goal to predict the distance at which harbor porpoises can detect fishing nets. In experiment 1, the maximum distance at which the 3-year-old porpoise could detect a 7.62-cm diameter water-filled stainless-steel sphere by echolocation was determined psychophysically. The 50%-current detection threshold was reached when the sphere was at a distance of 26 m from the porpoise's rostrum. In experiment 2, conducted a year later, the maximum detection distance for a 5.08-cm water-filled stainless-steel sphere was 15.9 m. The target strengths of both targets were measured using simulated harbor porpoise echolocation signals and the results, coupled with transmission-loss calculations, indicated that the echo levels received by the porpoise with the targets at the threshold ranges in the two experiments were only 1.3 dB apart. Together with information on the target strengths of various fishing nets, the results of the present study can be used to predict the distance at which the nets can be detected by harbor porpoises.  相似文献   

9.
In this paper, the underwater localization is given from wireless acoustic communication signals by probabilistic pattern recognition in eigenspace of PCA (principal components analyses). It should be emphasized that our underwater localization is from existing wireless acoustic communication signals, but not from additional localization systems. Our underwater localization scheme is based on fingerprinting and contains two stages, i.e., the off-line (i.e., training) and on-line (i.e., predicting) stages. In general, the received acoustic signals fluctuate seriously in underwater environments. To reduce the complexity and noise effects, all received signals are projected onto the eigenspace of PCA. Each projected feature is assumed to have Gaussian probabilistic distributions. Therefore, the location information can be easily obtained by probabilistic pattern recognition of projected features in PCA space. Note that our underwater localization scheme is not affected by reflected signals. To illustrate such a benefit, experiments were conducted in a bounded water pool where reflected signals exist near the walls. Experimental results show that the proposed underwater localization scheme is efficient and accurate. The proposed localization scheme is useful for underwater acoustic communication networks, and then in underwater technologies.  相似文献   

10.
11.
The distance at which harbor porpoises can hear underwater detonation sounds is unknown, but depends, among other factors, on the hearing threshold of the species for impulsive sounds. Therefore, the underwater hearing threshold of a young harbor porpoise for an impulsive sound, designed to mimic a detonation pulse, was quantified by using a psychophysical technique. The synthetic exponential pulse with a 5?ms time constant was produced and transmitted by an underwater projector in a pool. The resulting underwater sound, though modified by the response of the projection system and by the pool, exhibited the characteristic features of detonation sounds: A zero to peak sound pressure level of at least 30?dB (re 1?s(-1)) higher than the sound exposure level, and a short duration (34?ms). The animal's 50% detection threshold for this impulsive sound occurred at a received unweighted broadband sound exposure level of 60?dB re 1?μPa(2)s. It is shown that the porpoise's audiogram for short-duration tonal signals [Kastelein et al., J. Acoust. Soc. Am. 128, 3211-3222 (2010)] can be used to estimate its hearing threshold for impulsive sounds.  相似文献   

12.
Underwater audiograms are available for only a few odontocete species. A false killer whale (Pseudorca crassidens) was trained at Sea Life Park in Oahu, Hawaii for an underwater hearing test using a go/no-go response paradigm. Over a 6-month period, auditory thresholds from 2-115 kHz were measured using an up/down staircase psychometric technique. The resulting audiogram showed hearing sensitivities below 64 kHz similar to those of belugas (Delphinapterus leucas) and Atlantic bottlenosed dolphins (Tursiops truncatus). Above 64 kHz, this Pseudorca had a rapid decrease in sensitivity of about 150 dB per octave. A similar decrease in sensitivity occurs at 32 kHz in the killer whale, at 50 kHz in the Amazon River dolphin, at 120 kHz in the beluga, at 140 kHz in the bottlenosed dolphin, and at 140 kHz in the harbor porpoise. The most sensitive range of hearing was from 16-64 kHz (a range of 10 dB from the maximum sensitivity). This range corresponds with the peak frequency of echolocation pulses recorded from captive Pseudorca.  相似文献   

13.
The transmission beam pattern of an echolocating harbor porpoise (Phocoena phocoena) was measured in both the vertical and horizontal planes. An array of seven Brüel and Kjaer 8103 hydrophones connected to an amplifier-line driver module was used to measure the beam patterns. The porpoise was trained to station in a hoop and echolocate a cylindrical target located at a range between 7 and 9 m while the array was located 2 m in front of the hoop. The 3-dB beamwidth in both the vertical and horizontal planes was the same at approximately 16 degrees and the beam was pointed toward the forward direction. The individual hydrophones in both the vertical and horizontal arrays measured signal waveforms that were similar throughout the 40-degree span of the array. The porpoise emitted signals with intervals that were 20 to 35 ms longer than the round trip travel time between the animal and the target. The average source level, peak frequency, and bandwidth were 157 dB, 128 kHz, and 16 kHz, respectively.  相似文献   

14.
The underwater hearing sensitivity of a two-year-old harbor porpoise was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using narrow-band frequency-modulated signals having center frequencies between 250 Hz and 180 kHz. The resulting audiogram was U-shaped with the range of best hearing (defined as 10 dB within maximum sensitivity) from 16 to 140 kHz, with a reduced sensitivity around 64 kHz. Maximum sensitivity (about 33 dB re 1 microPa) occurred between 100 and 140 kHz. This maximum sensitivity range corresponds with the peak frequency of echolocation pulses produced by harbor porpoises (120-130 kHz). Sensitivity falls about 10 dB per octave below 16 kHz and falls off sharply above 140 kHz (260 dB per octave). Compared to a previous audiogram of this species (Andersen, 1970), the present audiogram shows less sensitive hearing between 2 and 8 kHz and more sensitive hearing between 16 and 180 kHz. This harbor porpoise has the highest upper-frequency limit of all odontocetes investigated. The time it took for the porpoise to move its head 22 cm after the signal onset (movement time) was also measured. It increased from about 1 s at 10 dB above threshold, to about 1.5 s at threshold.  相似文献   

15.
Receiving beam patterns of a harbor porpoise were measured in the horizontal plane, using narrow-band frequency modulated signals with center frequencies of 16, 64, and 100 kHz. Total signal duration was 1000 ms, including a 200 ms rise time and 300 ms fall time. The harbor porpoise was trained to participate in a psychophysical test and stationed itself horizontally in a specific direction in the center of a 16-m-diameter circle consisting of 16 equally-spaced underwater transducers. The animal's head and the transducers were in the same horizontal plane, 1.5 m below the water surface. The go/no-go response paradigm was used; the animal left the listening station when it heard a sound signal. The method of constants was applied. For each transducer the 50% detection threshold amplitude was determined in 16 trials per amplitude, for each of the three frequencies. The beam patterns were not symmetrical with respect to the midline of the animal's body, but had a deflection of 3-7 degrees to the right. The receiving beam pattern narrowed with increasing frequency. Assuming that the pattern is rotation-symmetrical according to an average of the horizontal beam pattern halves, the receiving directivity indices are 4.3 at 16 kHz, 6.0 at 64 kHz, and 11.7 dB at 100 kHz. The receiving directivity indices of the porpoise were lower than those measured for bottlenose dolphins. This means that harbor porpoises have wider receiving beam patterns than bottlenose dolphins for the same frequencies. Directivity of hearing improves the signal-to-noise ratio and thus is a tool for a better detection of certain signals in a given ambient noise condition.  相似文献   

16.
Helicopter long range active sonar (HELRAS), a "dipping" sonar system used by lowering transducer and receiver arrays into water from helicopters, produces signals within the functional hearing range of many marine animals, including the harbor porpoise. The distance at which the signals can be heard is unknown, and depends, among other factors, on the hearing sensitivity of the species to these particular signals. Therefore, the hearing thresholds of a harbor porpoise for HELRAS signals were quantified by means of a psychophysical technique. Detection thresholds were obtained for five 1.25 s simulated HELRAS signals, varying in their harmonic content and amplitude envelopes. The 50% hearing thresholds for the different signals were similar: 76 dB re 1 μPa (broadband sound pressure level, averaged over the signal duration). The detection thresholds were similar to those found in the same porpoise for tonal signals in the 1-2 kHz range measured in a previous study. Harmonic distortion, which occurred in three of the five signals, had little influence on their audibility. The results of this study, combined with information on the source level of the signal, the propagation conditions and ambient noise levels, allow the calculation of accurate estimates of the distances at which porpoises can detect HELRAS signals.  相似文献   

17.
Transfer effects of playing an auditory game with a virtual auditory display (VAD) were investigated. Furthermore, we analyzed the effects of playing the VAD game on sound localization performance under subjects’ own head-related transfer functions (HRTFs) and HRTFs fitted from those of 16 other adults. Participants performed sound localization tasks initially and 2 weeks later to show the effects. The VAD game players were of three groups, using own HRTFs, fitted HRTFs, and no playing (control). The VAD game-playing results revealed that: (1) the hit rate of the sound localization task for real sound sources increased approximately 20%; (2) the vertical and horizontal localization error decreased significantly; (3) sound localization performance using fitted HRTFs was similar to performance using own HRTFs. Follow-up tests revealed that transfer effects persisted more than 1 month, suggesting that the effects of playing the VAD game transfer to sound localization performance.  相似文献   

18.
Auditory brainstem responses (ABRs) were recorded in adult budgerigars, canaries, and zebra finches in quiet and in three levels of white noise for tone stimuli between 1 and 4 kHz. Similar to behavioral results, masked ABR thresholds increased linearly with increasing noise levels. When the three species are considered together, ABR-derived CRs were higher than behavioral CRs by 18-23 dB between 2 and 4 kHz and by about 30 dB at 1 kHz. This study clarifies the utility of using ABRs for estimating masked auditory thresholds in natural environmental noises in species that cannot be tested behaviorally.  相似文献   

19.
20.
The present study examined auditory distance perception cues in a non-territorial songbird, the zebra finch (Taeniopygia guttata), and in a non-songbird, the budgerigar (Melopsittacus undulatus). Using operant conditioning procedures, three zebra finches and three budgerigars were trained to identify 1- (Near) and 75-m (Far) recordings of three budgerigar contact calls, one male zebra finch song, and one female zebra finch call. Once the birds were trained on these endpoint stimuli, other stimuli were introduced into the operant task. These stimuli included recordings at intermediate distances and artificially altered stimuli simulating changes in overall amplitude, high-frequency attenuation, reverberation, and all three cues combined. By examining distance cues (amplitude, high-frequency attenuation, and reverberation) separately, this study sought to determine which cue was the most salient for the birds. The results suggest that both species could scale the stimuli on a continuum from Near to Far and that amplitude was the most important cue for these birds in auditory distance perception, as in humans and other animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号