首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a two-dimensional analytical solution for compound channel flows with vegetated floodplains. The depth-integrated N-S equation is used for analyzing the steady uniform flow. The effects of the vegetation are considered as the drag force item. The secondary currents are also taken into account in the governing equations, and the preliminary estimation of the secondary current intensity coefficient K is discussed. The predicted results for the straight channels and the apex cross-section of meandering channels agree well with experimental data, which shows that the analytical model presented here can be applied to predict the flow in compound channels with vegetated floodplains.  相似文献   

2.
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item, The compound channel is divided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vegetated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical solution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.  相似文献   

3.
The theory of poroelasticity is introduced to study the hydraulic properties of the steady uniform turbulent flow in a partially vegetated rectangular channel. Plants are assumed as immovable media. The resistance caused by vegetation is expressed by the theory of poroelasticity. Considering the influence of a secondary flow, the momentum equation can be simplified. The momentum equation is nondimensionalized to obtain a smooth solution for the lateral distribution of the longitudinal velocity. To verify the model, an acoustic Doppler velocimeter (ADV) is used to measure the velocity field in a rectangular open channel partially with emergent artificial rigid vegetation. Comparisons between the measured data and the computed results show that the method can predict the transverse distributions of stream-wise velocities in turbulent flows in a rectangular channel with partial vegetation.  相似文献   

4.
The pressure is a somewhat mysterious quantity in incompressible flows. It is not a thermodynamic variable as there is no ‘equation of state’ for an incompressible fluid. It is in one sense a mathematical artefact—a Lagrange multiplier that constrains the velocity field to remain divergence-free; i.e., incompressible—yet its gradient is a relevant physical quantity: a force per unit volume. It propagates at infinite speed in order to keep the flow always and everywhere incompressible; i.e., it is always in equilibrium with a time-varying divergence-free velocity field. It is also often difficult and/or expensive to compute. While the pressure is perfectly well-defined (at least up to an arbitrary additive constant) by the governing equations describing the conservation of mass and momentum, it is (ironically) less so when more directly expressed in terms of a Poisson equation that is both derivable from the original conservation equations and used (or misused) to replace the mass conservation equation. This is because in this latter form it is also necessary to address directly the subject of pressure boundary conditions, whose proper specification is crucial (in many ways) and forms the basis of this work. Herein we show that the same principles of mass and momentum conservation, combined with a continuity argument, lead to the correct boundary conditions for the pressure Poisson equation: viz., a Neumann condition that is derived simply by applying the normal component of the momentum equation at the boundary. It usually follows, but is not so crucial, that the tangential momentum equation is also satisfied at the boundary.  相似文献   

5.
A simple but applicable analytical model is presented to predict the lateral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derived from the momentum equation and the flow continuity equation under the condition of quasi-uniform flow. A series of experiments are conducted in a large-scale meandering compound channel. Based on the experimental data, a magnitude analysis is carried out for the governing equation, and two lower-order shear stress terms are ignored. Four groups of experimental data from different sources are used to verify the predictive capability of this model, and good predictions are obtained. Finally, the determination of the velocity parameter and the limitation of this model are discussed.  相似文献   

6.
Stability of laminar flow in a curved channel formed by two concentric cylindrical surfaces is investigated. The channel is occupied by a fluid saturated porous medium; the flow in the channel is driven by a constant azimuthal pressure gradient. The momentum equation takes into account two drag terms: the Darcy term that describes friction between the fluid and the porous matrix, and the Brinkman term, which allows imposing the no-slip boundary condition at the channel walls. An analytical solution for the basic flow velocity is obtained. Numerical analysis is carried out using the collocation method to investigate the onset of instability leading to the development of a secondary motion in the form of toroidal vortices. The dependence of the critical Dean number on porosity and the channel width is analyzed.  相似文献   

7.
In this paper, B. B. Golubef method[1] is used for calculating the radial diffuse flow between two parallel disks for the first step. The momentum integral equation together with the energy integral equation is derived from the boundary layer momentum equation, and the expression of secondary approximation explicit function in which the channel length of entrance region varies with the boundary layer thickness can be obtained by using Picard iteration[2] in the solution of the energy integral equation. Therefore, this has made it possible to analyze directly and analytically the coefficients of the entrance region effect. In particular, when the outer diameter of disk is smaller than the entrance region length, the advantage of this method can be prominently manifest.Only because the energy integral equation is employed, the terms in the pressure loss coefficient can be independently derived theoretically. The computable value of the pressure loss coefficient presented in this paper is nearer to the testing value than that in ref. [3] when the entrance correction Reynolds number Re<100. Therefore the results in this paper within Re<100 are both reliable and simple.  相似文献   

8.
This paper presents a 2D analytical solution for the transverse velocity distribution in compound open channels based on the Shiono and Knight method (SKM), in which the secondary flow coefficient (K-value) is introduced to take into account the effect of the secondary flow. The modeling results agree well with the experimental results from the Science and Engineering Research Council-Flood Channel Facility (SERC-FCF). Based on the SERC-FCF, the effects of geography on the secondary flow coefficient and the reason for such effects are analyzed. The modeling results show that the intensity of the secondary flow is related to the geometry of the section of the compound channel, and the sign of the K-value is related to the rotating direction of the secondary flow cell. This study provides a scientific reference to the selection of theK-value.  相似文献   

9.
丁忠满  王致清 《力学学报》1994,26(3):368-373
在文献 ̄[2,3]的基础上,将其方法推广到幂律流体流动,首先导出幂律流体两平行圆板间径向扩散层流边界层的动量积分方程和能量积分方程。通过对动量积分方程的求解,对幂律流体的进口段长度以及进口段效应压力损失和流量修正系数进行了分析计算,并且讨论了幂律流体的流动指数n与进口处修正雷诺数Re_1对进口段长度和压力损失系数的影响。特别是当n=1时,本文的解与文献 ̄[3]中的解完全一致,因而间接验证了本文结果的可靠性。  相似文献   

10.
In this study, a comparison between the 1D and 2D numerical simulation of transitional flow in open‐channel networks is presented and completely described allowing for a full comprehension of the modeling water flow. For flow in an open‐channel network, mutual effects exist among the channel branches joining at a junction. Therefore, for the 1D study, the whole system (branches and junction) cannot be treated individually. The 1D Saint Venant equations calculating the flow in the branches are then supplemented by various equations used at the junction: a discharge flow conservation equation between the branches arriving and leaving the junction, and a momentum or energy conservation equation. The disadvantages of the 1D study are that the equations used at the junction are of empirical nature due to certain parameters given by experimental results and moreover they often present a reduced field of validity. On the contrary, for the 2D study, the entire network is considered as a single unit and the flow in all the branches and junctions is solved simultaneously. Therefore, we simply apply the 2D Saint Venant equations, which are solved by a second‐order Runge–Kutta discontinuous Galerkin method. Finally, the experimental results obtained by Hager are used to validate and to compare the two approaches 1D and 2D. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper considers a nonlinear integrodifferential model constructed for the motion of an ideal incompressible fluid in an open channel of variable section using the long-wave approximation. A characteristic equation for describing the perturbation propagation velocity in the fluid is derived. Necessary and sufficient conditions of generalized hyperbolicity for the equations of motion are formulated, and the characteristic form of the system is calculated. In the case of a channel of constant width, the model reduces to the Riemann integral invariants which are conserved along the characteristics. It is found that, during the evolution of the flow, the type of the equations of motion can change, which corresponds to long-wave instability for a certain velocity distribution along the channel width. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 2, pp. 61–71, March–April, 2009.  相似文献   

12.
13.
Many energy production and chemical processes involve vapor/liquid two-phase flows. Mass and energy are often exchanged between the vapor and the liquid phases, and the fluid mechanics of the two-phase system is strongly influenced by the exchange of momentum between each phase. Significantly, the transport of mass, energy and momentum between the phases takes place across interfaces. Therefore the interfacial area density (i.e. the interfacial area per unit volume) has to be accurately known in order to make reliable predictions of the interfacial transfers. Indeed, the interfacial area density must be known for both steady and transient two-phase flows. It is the purpose of this paper to present a first order relaxation model which is derived from the Boltzmann transport equation, and which accurately describes the evolution of interfacial area density for bubbly flows. In particular, the local, instantaneous interfacial area densities and volume fractions are predicted for vertical flow of a vapor/liquid bubbly flow involving both bubble clusters and individual bubbles.  相似文献   

14.
In this paper, the first analytical endeavor into the fluid dynamic modeling of an MR polishing process is reported. The velocity and shear stress fields of an MR fluid running through a thin slippery channel with a slightly varying height are analytically solved using a bi-viscosity constitutive model and a Navier slip model. Estimations of the mechanical power density and the total power per unit depth applied onto the channel surfaces are also presented. Analytical solutions for the Couette–Poiseuille flow behavior of a bi-viscous fluid flowing through either parallel or non-uniform channels are obtained, and the associated necessary and sufficient conditions characterizing a total of 5 types of flow are derived.The behaviors of the fluid are examined through the use of a parametric diagram of Bingham number (Bn) and Couette number (Co), i.e., BnCo or 1/Bn–1/Co diagram, by changing the geometric and operating conditions. Using these diagrams, variations in the rheological characteristics of the flow are investigated in great detail, with a special focus on the movement of the pseudo-core region. Finally, the mechanical power density field obtained for the flow in a converging–diverging channel is used to explain the wear mechanism in the MR polishing process. The effects of the power density field and the total power on the material removal rate (MRR) and the within-workpiece nonuniformity (WIWNU) with respect to various geometric and operating conditions are evaluated.  相似文献   

15.
Curved microchannels are often encountered in lab-on-chip systems because the effective axial channel lengths of such channels are often larger than those of straight microchannels for a given per unit chip length. In this paper, the effective diffusivity of a neutral solute in an oscillating electromagnetohydrodynamic(EMHD)flow through a curved rectangular microchannel is investigated theoretically. The flow is assumed as a creeping flow due to the extremely low Reynolds number in such microflo...  相似文献   

16.
Three‐dimensional (3D) numerical study is presented to investigate the turbulent flow in meandering compound open channels with trapezoidal cross‐sections. The flow simulation is carried out by solving the 3D Reynolds‐averaged continuity and Navier–Stokes equations with Reynolds stress equation model (RSM) for steady‐state flow. Finite volume method (FVM) is applied to numerically solve the governing equations of fluid flow. The velocity magnitude, tangential velocity, transverse velocity and Reynolds stresses are calculated for various flow conditions. Good agreement between the simulated and available laboratory measurements was obtained, indicating that the RSM can accurately predict the complicated flow phenomenon. Comparison of the calculated secondary currents of four cases (one being inbank flow and other three being overbank flow) with different water depths reveals that (i) the inbank flow exhibits different flow behaviors from that of the overbank flow does and (ii) the water depth has significant effects on the magnitude and direction of secondary currents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
植被作用下的复式河槽流速分布特性   总被引:12,自引:0,他引:12  
通过水槽试验,探讨了不同滩地植物 (乔木、灌木和野草) 对复式河槽流速分布的影响. 详细地介绍试验过程及三维流速仪ADV的测量原理. 试验时, 选塑料吸管、鸭毛和塑料大草分别模拟乔木、灌木和野草. 同时,考虑了流量、床面底坡对 流速分布的影响. 试验结果表明,滩地未种树的复式河槽在大的相对水深时,流速满足对数 分布;滩地种树后,主槽流速增大,流速分布复杂,滩地流速减小,呈 S 形分布,不同植物的S 形分布是不同的. 这种S 型分布将水流划分为3个区的复杂行为,每区的范围与水深,垂线位置和植物类型有关. 床面坡度对流速分布的影响非常明显  相似文献   

18.
The propagation of solid particle admixture in a flow through a flat channel is studied.The processes of diffusion and convective transfer as well as solid particle deposition due to gravity result in varying admixture concentration both in depth and longtitudinally.The study of admixture longitudinal distribution is of great interest in a lot of applications, therefore this paper gives the derivation of longitudinal diffusion equation for a mean cross-section admixture concentration.The equation contains three effective parameters; i.e. convective tranfer velocity, longitudinal diffusion coefficient and particle deposition time. These parameters integrally reflect local processes of matter transfer as well as momentum.The proposed model is specific and differs from Taylor equation for longitudinal diffusion, since the fact of particle deposition and adhesion is taken into account. As a result of particle deposition a sediment layer is formed on the channel bottom which increases in thickness with time. To describe this process balance conditions for the whole flow mass and admixture mass on sediment sediment surface are formulated and a condition for matter movement towards the channel bottom is derived that is different from zero due to particle adhesion.  相似文献   

19.
A review of the information available in the literature is given, and new experimental data on the depth and discharge at the dam site after a total and a partial dam break are presented. It is shown that in the case of a partial dam break with the formation of a rectangular breach, the specific discharge per unit width of the breach is higher than the specific discharge in the case of a total dam break with the same excess initial energy in the headwater. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 77–87, September–October, 2006.  相似文献   

20.
Two-dimensional steady rarefied-gas channel flow between two parallel walls, from an evaporating face to a perfectly absorbing plane end face, is studied. The vapor is considered to be a monatomic gas. The corresponding problem for the kinetic equation with collision integral in BGK form is formulated and solved numerically by two different finite-difference methods. Attention is focused on the calculation of the total gas flow rate through the channel cross-section. The structure of the gas channel flow as a function of the flow rarefaction, the channel length, and the ratio of the evaporation temperature to the wall temperature is studied.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 150–158, January–February, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号