首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel ZnS quantum dots (QDs) and ZnS quantum flakes (QFs) were successfully prepared with graphene nanosheets (GNs) as a special template, and two unique heterostructures of ZnS/GNs were also obtained. Due to the structure-directing template effect of GNs, the as-synthesized ZnS with different morphologies, dots or flakes, were uniformly distributed on the surface of GNs by controlling nucleation and growth. The two different heterostructures of ZnS/GNs exhibited obvious photovoltaic response, and ZnS/GN QFs-on-sheet heterostructures show higher photovoltage than that of ZnS/GN QDs-on-sheet.  相似文献   

2.
We demonstrate that Ag(2)S nanocrystals are the bifunctional mediator for controllable growth of semiconductor heterostructures including more complicated multisegments heterostructures in solution-phase, which is a new type of nanomediator and quite different from the metal nanoparticle catalyst. The intrinsic high Ag(+) ion mobility makes Ag(2)S nanocrystals not only exhibit excellent catalytic function for growth of metal sulfide heterostructures but also act as a source-host for growth of ternary semiconductor heterostructures, for example, Ag(2)S-AgInS(2). The semiconductors grow epitaxially from or inward in Ag(2)S nanocrystals forming single-crystalline heterostructures. Moreover, the method developed here also can construct multisegments heterostructures, for example, Ag(2)S-CdS-ZnS, AgInS(2)-Ag(2)S-AgInS(2). The interfacial structure is still stable even if the lattice mismatch is quite large, which is a unique feature of this method.  相似文献   

3.
The research in two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides (TMDs) and black phosphorus, has been further flourished with the recent emergence of heterostructures composed of dissimilar 2D materials. The interfacing/coupling between different constituent components in a heterostructure has given rise to interesting phenomena and useful properties. For example, depending on the type of 2D materials, the distance and the kind of bonding between them, as well as the crystalline property of the hetero-interface, the interface may provide charge traps, exciton recombination centers, or bridges for effective charge/energy transfer. It has also been found that the spatial arrangement in addition to the composition of the constituents is an important factor influencing the overall properties of the heterostructures. Although many methods, such as dry transfer and vapor-phased growth are able to yield heterostructures from pristine or highly crystalline 2D crystals with spatial control, such as vertical heterostructures and lateral heterostructures, these methods are generally not scalable, which has restricted the use of the obtained heterostructures mostly to fundamental studies. The solution-phased synthesis methods, such as solvothermal/hydrothermal synthesis, electrochemical deposition and hot-injection method, may be more suitable for mass production of functional heterostructures despite the relatively low product quality. In the past couple of years, a diverse kinds of hetero/hybrid structures of 2D materials have been prepared successfully in wet-chemical processes. However, precise control over the geometric arrangement of the constituent components has been challenging in solution. Currently, four types of heterostructures including 2D crystals grown on a larger 2D template, vertical heterostructures, lateral heterostructures, and core-shell heterostructures have been prepared in solution. For the first type, flexible 2D nanosheets such as graphene and monolayer TMDs are used as synthesis templates to support the nucleation and growth of other 2D crystals. For vertical heterostructures, relatively rigid nanoplates are used to allow continuous deposition of 2D layers of other materials to form sandwich-like structures. The formation of lateral heterostructures requires edge growth on existing 2D materials without basal deposition, and therefore other methods such as cation exchange can be used as alternative routes. The preparation of core-shell 2D heterostructures generally involves both epitaxial edge growth and basal deposition and has been realized in both metallic and semiconductor structures. In this review, these kinds of heterostructures based on 2D materials will be discussed in terms of their synthesis methods, properties and possible applications. In addition, we will discuss the challenges and possible opportunities in this research direction.  相似文献   

4.
A water-dichloromethane interface-assisted hydrothermal method was employed to grow rutile TiO(2) nanowires (NWs) on electrospun anatase TiO(2) nanofibers (NFs), using highly reactive TiCl(4) as precursor. The water-dichloromethane interface inhibited the formation of rutile NWs in water phase, but promoted the selective radial growth of densely packed rutile NWs on anatase NFs to form a branched heterojunction. The density and length of rutile NWs could be readily controlled by varying reaction parameters. A formation mechanism for the branched heterojunction was proposed which involved (1) the entrapment of rutile precursor nanoparticles at water-dichloromethane interface, (2) the growth of rutile NWs on anatase NFs via Ostwald ripening through the scavengering of interface-entrapped rutile nanoparticles. The heterojunction formed at anatase NF and rutile NW enhanced the charge separation of both under ultraviolet excitation, as evidenced by photoluminescence and surface photovoltage spectra. The branched TiO(2) heterostructures showed higher photocatalytic activity in degradation of rodamine B dye solution than anatase NFs, and the mixture of anatase NFs, and P25 powders, which was discussed in terms of the synergistic effect of enhanced charge separation by anatase-rutile heterojunction, high activity of rutile NWs, and increased specific area of branched heterostructures.  相似文献   

5.
A novel silica-coated multiwall carbon nanotube (MWNTs) with CdTe quantum dots nanocomposite was synthesized in this paper. Here, we show the in situ growth of crystalline CdTe quantum dots on the surfaces of oxidized MWNTs. The approach proposed herein differs from previous attempts to synthesize nanotube assemblies in that we mix the oxidized MWNTs into CdCl2 solution of CdTe nanocrystals synthesized in aqueous solution. Reinforced the QD–MWNTs heterostructures with silica coating, this method is not invasive and does not introduce defects to the structure of carbon nanotubes (CNTs), and it ensures high stability in a range of organic solvents. Furthermore, a narrow SiO2 layer on the MWNT–CdTe heterostructures can eliminate the biological toxicity of quantum dots and carbon nanotubes. This is not only a breakthrough in the synthesis of one-dimensional nanostructures, but also taking new elements into bio-nanotechnology.  相似文献   

6.
采用简便的两步溶液相化学方法,在较低温度下(80℃),制备出了花状的ZnO/ZnS异质结构。分别利用X射线衍射、X射线光电子能谱仪、扫描电子显微镜、透射电子显微镜、紫外-可见光谱仪等测试手段对所制备的样品进行表征,结果表明ZnO/ZnS异质结构是由花状ZnO纳米结构和ZnS纳米粒子组成。在光降解罗丹明B(RhB)的测试中,ZnO/ZnS异质结构样品体现出了比ZnO前驱物和商业P25光催化剂更高的光催化效率,这主要可归因于异质结构更有利于电子-空穴的有效分离。ZnO/ZnS光催化剂体现出良好的循环稳定性。  相似文献   

7.
The generation of nanoscale interconnects and supramolecular, hierarchical assemblies enables the development of a number of novel nanoscale applications. A rational approach toward engineering a robust system is through chemical recognition. Here, we show the in situ mineralization of crystalline CdTe quantum dots on the surfaces of oxidized multiwalled carbon nanotubes (MWNTs). We coordinate metallic precursors of quantum dots directly onto nanotubes and then proceed with in situ growth. The resulting network of molecular-scale "fused" nanotube-nanocrystal heterojunctions demonstrates a controlled synthetic route to the synthesis of complex nanoscale heterostructures. Extensive characterization of these heterostructures has been performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-visible spectroscopy, and X-ray diffraction (XRD).  相似文献   

8.
Controlled stacking of different two‐dimensional (2D) atomic layers will greatly expand the family of 2D materials and broaden their applications. A novel approach for synthesizing MoS2/WS2 heterostructures by chemical vapor deposition has been developed. The successful synthesis of pristine MoS2/WS2 heterostructures is attributed to using core–shell WO3?x/MoO3?x nanowires as a precursor, which naturally ensures the sequential growth of MoS2 and WS2. The obtained heterostructures exhibited high crystallinity, strong interlayer interaction, and high mobility, suggesting their promising applications in nanoelectronics. The stacking orientations of the two layers were also explored from both experimental and theoretical aspects. It is elucidated that the rational design of precursors can accurately control the growth of high‐quality 2D heterostructures. Moreover, this simple approach opens up a new way for creating various novel 2D heterostructures by using a large variety of heteronanomaterials as precursors.  相似文献   

9.
ZnO/Zn-Al layered double hydroxide (ZnO/Zn-Al LDH) hierarchical architecture, a new type of ZnO-based heterostructure, has been synthesized directly on an Al substrate via a facile solution phase process. The firecracker-like heterostructures consist of uniform ZnO nanorods orderly standing at the edges of two-dimensional (2D) surfaces of Zn-Al LDH nanoplatelets. Experimental result obtained from the early growth stage indicates that the underlying Zn-Al LDH nanoplatelet arrays are well constructed with their (00l) planes perpendicular to the surface of Al substrate. We propose that the "edge effect" of Zn-Al LDH and the "lattice match" between ZnO and Zn-Al LDH are vital to the growth of such heterostructures. The effects of total solution volume and NH3.H2O concentration on the formation of heterostructures are investigated. It is found that other LDH-based complex structures can also be achieved controllably by varying the mentioned experimental factors. Our work is the first demonstration of fabricating intricate ZnO/Zn-Al LDH heterostructures as well as well-defined Zn-Al LDH arrays on an Al substrate, for which several promising applications such as optoelectronics, biosensors, and catalysis can be envisioned.  相似文献   

10.
Preparation of two‐dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn ‐WX2 (n =2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn ‐WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single‐ or few‐layer WX2 nanosheets (NSs). As a proof‐of‐concept application, the WOn ‐WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light‐emitting diodes (QLEDs). The QLED prepared with WO2.9 NP‐WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.  相似文献   

11.
Preparation of two‐dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn ‐WX2 (n =2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn ‐WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single‐ or few‐layer WX2 nanosheets (NSs). As a proof‐of‐concept application, the WOn ‐WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light‐emitting diodes (QLEDs). The QLED prepared with WO2.9 NP‐WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.  相似文献   

12.
The method of liquid injection chemical vapour deposition (LICVD) is a new technique, which is being developed for its potential to allow new material compositions and simpler and more flexible deposition schemes. The potential advantage of this technique is that it is possible to fix the precursor composition(s) in the injection solvent, permitting a simpler injection scheme compared to the current need for bubblers or gaseous precursors in CVD. In our system the precursor solution is rapidly volatilised into a carrier gas stream, which is then passed over the heated substrate. In this initial study we use the single component titanium tetraisopropoxide (TTIP) dissolved in THF for the injection solution, and investigate the behaviour of the deposition with in situ optical reflectometry and ex situ XRD and AFM. The data gained gives information on the growth rate, morphology and crystalline properties of the films. The characteristics of our deposition system are that we find a flux controlled growth mode, changes in the rate of deposition as a function of thickness, which are related to the surface morphology and the growth of Ti2O3 at temperatures above 450 °C. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
We report a method for synthesizing three distinct type II 3D ZnO/ZnSe heterostructures through simple solution-based surface modification reactions in which polycrystalline ZnSe nanoparticles formed on the surfaces of single-crystalline ZnO building blocks of 3D superstructures. The experimental results suggested a possible formation mechanism for these heterostructures. The formation of the ZnO/ZnSe heterostructures was assumed to result from a dissolution-recrystallization mechanism. The optical properties of the 3D ZnO/ZnSe heterostructures were probed by UV-vis diffuse reflectance spectroscopy. The 3D ZnO/ZnSe heterostructures exhibited absorption in the visible spectral region. The visible photocatalytic activities of 3D ZnO/ZnSe heterostructures were much higher than those of the 3D pure ZnO structures. The activities of the 3D ZnO/ZnSe heterostructures varied according to the structures under visible light. The morphologies and exposed crystal faces of pure ZnO building blocks prior to surface modification had a significant effect on the visible light photocatalytic processes of ZnO/ZnSe heterostructures after surface modification.  相似文献   

14.
Epitaxial semiconducting heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires were grown via a simple two-stage thermal evaporation of mixed SiO and ZnS or SiO and ZnSe powders under a precise temperature control. Each nanowire had a uniform diameter of 40-120 nm and length ranging from several to several tens of micrometers. Subnanowires of Si, ZnS, and ZnSe within them had a diameter of 20-50, 40-60, and 20-50 nm, respectively. The optical property (nanoscale cathodoluminescence) was also investigated from these new structures. It is proposed that the Si nanowires formed through disproportionation of SiO to Si in the first evaporation stage and then served as one-dimensional nanoscale substrates (or templates) for an epitaxial growth of ZnS or ZnSe nanowires in the following thermal evaporation of ZnS or ZnSe powders. The present results suggest that the simple method might be useful for the synthesis of many other heterostructures containing Si and II-VI or III-V semiconducting composite nanowires to meet the growing demands of nanoscale science and technology.  相似文献   

15.
Dendritic organic heterojunctions with aluminum tris(8-hydroxyquinoline) (Alq(3)) microwire trunks and 1,5-diaminoanthraquinone (DAAQ) nanowire branches were prepared by a two-step growth process. The prefabricated Alq(3) microwires act as nucleation centers for site-specific secondary vapor growth of DAAQ nanowires, resulting in the unique dendritic heterostructures. When the trunk was excited with a focused laser beam, emitted light of various colors was simultaneously channeled from the branched nanowires via both waveguiding and energy transfer. The intensity of the out-coupled emissions was modulated effectively by changing the polarization of the incident light.  相似文献   

16.
Liu L  Peng Q  Li Y 《Inorganic chemistry》2008,47(11):5022-5028
High quality CdSe quantum dots are synthesized through a room temperature injection technique by using CdAc2 and Na2SeSO3 as precursors. In this synthesis approach, small CdSe clusters are formed after the injection at room temperature. Thereafter, CdSe quantum dots with emissions from the green to the red region can be obtained by transferring these clusters to different temperatures (40-150 degrees C) for particle growth. Meanwhile, CdSe quantum dots with emission in the blue-violet region (500-430 nm) are gained by an oxidation etching approach using H2O2 as oxidant. The advantage of this method is the natural separation of the nucleation and the growth process, which can provide a longer time for the preparation of the nuclei in simple operations and a well controlled fluorescence of the products, as the evolution of the fluorescence is slow at this low particle growth temperature.  相似文献   

17.
TiO2/LaFeO3微纳米纤维的可控制备及光催化性能   总被引:1,自引:0,他引:1  
利用静电纺丝技术及水热合成法制备了TiO2/LaFeO3异质结构. 采用场发射扫描电子显微镜(FE-SEM),X射线衍射(XRD),傅里叶变换红外(FTIR)光谱和紫外-可见漫反射光谱(UV-Vis)等手段对TiO2/LaFeO3微纳米纤维的结构和表面形态进行表征. 通过亚甲基蓝(MB)光降解反应研究了其光催化性能. 结果表明,不完全碳化TiO2纤维表面的缺陷位点是LaFeO3纳米粒子的有利生长点. TiO2/LaFeO3异质结材料的带隙明显窄于TiO2,光催化活性得到提高;经140 min紫外光照射后,TiO2/LaFeO3异质结催化剂对MB的降解率为65.34%,分析和探讨了其光催化机理.  相似文献   

18.
A diffusion-controlled process was proposed for the preparation of inorganic nanotubes from nanowires. The preformed Cd(OH)2 nanowires were used as the sacrificial templates to generate CdS nanotubes with different wall thickness. The axle-sleeve transition state found in-between the precursor and the formation of products proves the diffusion-controlled mechanism. CdS nanotubes can be prepared via this method at different temperature and with various sulfide sources. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) results showed that all obtained CdS nanotubes consist conglomerated crystallites, and the crystallinity can be altered by changing the temperature of the growth process. The wall thickness of the produced CdS nanotubes can be controlled by changing the concentration of the sulfide source and stopping the reaction at different stages.  相似文献   

19.
The aim of this paper is to compare the effects of different mechanisms underlying the synthesis of copper nanoparticles using an atmospheric pressure radio-frequency induction thermal plasma. A design oriented modelling approach was used to parametrically investigate trends and impact of different parameters on the synthesis process through a thermo-fluid dynamic model coupled with electromagnetic field equations for describing the plasma behaviour and a moment method for describing nanoparticles nucleation, growth and transport. The effect of radiative losses from Cu vapour on the precursor evaporation efficiency is highlighted, with occurrence of loading effect even with low precursor feed rate due to the decrease in plasma temperature. A method to model nanoparticle deposition on a porous wall is proposed, in which a sticking coefficient is employed to model particle sticking on the porous wall used to carry a quench gas flow into the chamber. Two different reaction chamber designs combined with different quench gas injection strategies (injection through a porous wall for “active” quenching; injection of a shroud gas for “passive” quenching) are analysed in terms of process yield and size distribution of the synthetized nanoparticles. Conclusion can be drawn on the characteristics of each quenching strategy in terms of throughput and mean diameter of the synthesized nanoparticles.  相似文献   

20.
The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs3Bi2I9, Cs3Sb2I9) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号