首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Electrochemical cyclic voltammetric(CV)scan was applied to inducing the partial oxidation and defects of carbon nanotubes(CNTs).The electrochemically induced functional groups and physical defects were...  相似文献   

2.
不同直径碳纳米管的抗电化学氧化性   总被引:1,自引:0,他引:1  
本文比较了由化学气相沉积法制备的不同直径(在100 nm以内)的多壁碳纳米管(CNT)的抗电化学氧化性.将CNT电极于1.2 V(vs.RHE)下电氧化120 h,记录氧化电流~时间变化曲线;X射线光电子能谱(XPS)分析氧化前后CNT的表面化学组成.结果表明,随着CNT直径的减小,其氧化电流降低,但其中以为10~20 nm的CNT电极氧化电流最小,表面氧的增量也最小,即被氧化的程度最低,抗电化学氧化性最强.根据不同直径CNT的缺陷位、不定型碳的丰度和碳原子的应力能,分析了其抗电化学氧化性差异的原因.  相似文献   

3.
We prepared vertically aligned nitrogen doped carbon nanotubes (CNTs) on a rigid glass substrate or flexible plastic substrate via a 'growth-detachment-transfer' process and the vertically aligned N-doped CNT arrays are employed as counter electrodes for novel dye-sensitized solar cells.  相似文献   

4.
采用改进的浮动催化法在多孔Al2O3基体上制备了垂直取向的碳纳米管阵列, 并用旋转喷涂法将聚苯乙烯填充于碳纳米管的空隙, 进一步将其制备成复合碳纳米管膜, 研究了H2和CO2单组分在碳纳米管复合膜中的渗透性能, 实验结果表明, H2/CO2的理想分离系数随着复合膜中碳管管径的减小而增大, 在管径较小的复合膜中, 气体渗透分离系数高于努森扩散限制, 达到6.25, 具有一定的分离效果. 两种气体在复合膜中的渗透率随着渗透温度的增加而减小.  相似文献   

5.
Carbon nanotube (CNT) supported Pt nanoparticle catalysts have been prepared by spontaneous reduction of PtCl6(2-) ion as a result of direct redox reactions between PtCl6(2-) and oxygen-containing functional groups at defect sites of CNTs, which were introduced by chemical and electrochemical oxidation treatment of CNTs. The electrocatalytic properties of as-prepared Pt-CNT catalysts for methanol oxidation were investigated by chronopotentiometry and cyclic voltammetry. Compared with Pt catalysts prepared by hydrogen reduction and electrochemical deposition methods, Pt catalysts synthesized by functional CNT defects show excellent antipoisoning ability and long-term cycle stability.  相似文献   

6.
Aligning carbon nanotubes (CNTs) is a key challenge for fabricating CNT‐based electronic devices. Herein, we report a spherical nucleic acid (SNA) mediated approach for the highly precise alignment of CNTs at prescribed sites on DNA origami. We find that the cooperative DNA hybridization occurring at the interface of SNA and DNA‐coated CNTs leads to an approximately five‐fold improvement of the positioning efficiency. By combining this with the intrinsic positioning addressability of DNA origami, CNTs can be aligned in parallel with an extremely small angular variation of within 10°. Moreover, we demonstrate that the parallel alignment of CNTs prevents incorrect logic functionality originating from stray conducting paths formed by misaligned CNTs. This SNA‐mediated method thus holds great potential for fabricating scalable CNT arrays for nanoelectronics.  相似文献   

7.
Manganese dioxide was coated on multiwall carbon nanotubes-supported PtRu particles to prepare the MnO2/PtRu/CNT catalyst by a facile oxidation–reduction method. The prepared catalyst showed a high stability for electrocatalytic oxidation of methanol. After 2000 potential cycles, 55% activity still remained for MnO2/PtRu/CNT catalyst, while only 30% activity remained for PtRu/CNT, which indicated that the electrochemical stability of MnO2/PtRu/CNTs was improved significantly. MnO2 in MnO2/PtRu/CNTs prevented the dissolution of PtRu particles as well as the corrosion of the CNT supports, resulting in the improvement of the stability and activity.  相似文献   

8.
Ternary NiCoPd nanocatalyst dispersed on multi-walled carbon nanotubes (CNTs), NiCoPd/CNTs, was synthesized using a simple and green sonochemical method. The as-prepared NiCoPd/CNT hybrids were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The electrochemical measurements revealed that the ternary NiCoPd/CNTs exhibited an enhanced electrocatalytic activity for the methanol oxidation reaction (MOR), much superior to those of the binary NiPd/CNT and CoPd/CNT, as well as monometallic Pd/CNT counterparts, which likely resulted from the synergistic function of the dopant metals of Ni and Co.  相似文献   

9.
Solution redox chemistry of carbon nanotubes   总被引:1,自引:0,他引:1  
UV/vis/NIR absorbance spectra were used to monitor electron transfer between small-molecule redox reagents and carbon nanotubes (CNTs). The oxidation of (6, 5)-enriched nanotubes in water with K(2)Ir(Cl)(6) reveals a valence electron density of 0.2-0.4 e(-)/100 carbon atoms and a reduction potential of approximately 800 mV versus NHE. The reduction potential of CNTs is found to increase with increasing band gap and to decrease with the introduction of an anionic dispersant. In light of this newly revealed redox chemistry of CNTs, we propose that the previously observed bleaching of the CNT absorbance spectrum at low pH is most likely a consequence of the oxidation of the nanotubes by oxygen. These results demonstrate facile oxidation and reduction of CNTs, provide a way to quantify the population of valence electrons, and point to possible applications of CNT in the catalysis of redox reactions.  相似文献   

10.
The differences in the electrochemical oxidation of two commonly known catecholamines, dopamine and norepinephrine, and one catechol, dihydroxyphenylacetic acid (DOPAC), at three different types of carbon based electrodes comprising conventionally polished glassy carbon (GC), nitrogen-doped carbon nanotubes (N-CNTs), and non-doped CNTs were assessed. Raman microscopy and X-ray photoelectron spectroscopy (XPS) were employed to evaluate structural and compositional properties. Raman measurements indicate that N-CNT electrodes have ca. 2.4 times more edge plane sites over non-doped CNTs. XPS data show no evidence of oxygen functionalities at the surface of either CNT type. N-CNTs possess 4.0 at. % nitrogen as pyridinic, pyrrolic, and quaternary nitrogen functionalities that result in positively charged carbon surfaces in neutral and acidic solutions. The electrochemical behavior of the various carbon electrodes were investigated by cyclic voltammetry conducted in pH 5.8 acetate buffer. Semiintegral analysis of the voltammograms reveals a significant adsorptive character of dopamine and norepinephrine oxidation at N-CNT electrodes. Larger peak splittings, DeltaE(p), for the cyclic voltammograms of both catecholamines and a smaller DeltaE(p) for the cyclic voltammogram for DOPAC at N-CNT electrodes suggest that electrostatic interactions hinder oxidation of cationic dopamine and norepinephrine, but facilitate anionic DOPAC oxidation. These observations were supported by titrimetry of solid suspensions to determine the pH of point of zero charge (pH(pzc)) and estimate the number of basic sites for both CNT varieties. This study demonstrates that carbon purity, the presence of exposed edge plane sites, surface charge, and basicity of CNTs are important factors for influencing adsorption and enhancing the electrochemical oxidation of catecholamines and catechols.  相似文献   

11.
Aligning carbon nanotubes (CNTs) is a key challenge for fabricating CNT-based electronic devices. Herein, we report a spherical nucleic acid (SNA) mediated approach for the highly precise alignment of CNTs at prescribed sites on DNA origami. We find that the cooperative DNA hybridization occurring at the interface of SNA and DNA-coated CNTs leads to an approximately five-fold improvement of the positioning efficiency. By combining this with the intrinsic positioning addressability of DNA origami, CNTs can be aligned in parallel with an extremely small angular variation of within 10°. Moreover, we demonstrate that the parallel alignment of CNTs prevents incorrect logic functionality originating from stray conducting paths formed by misaligned CNTs. This SNA-mediated method thus holds great potential for fabricating scalable CNT arrays for nanoelectronics.  相似文献   

12.
In most graphene‐based electrochemical applications, graphene nanoplatelets (GNPs) have been applied. Now, for the first time, electrochemical properties of GNPs, namely, its electrochemical activity, potential window, and double‐layer capacitance, have been investigated. These properties are compared with those of carbon nanotubes (CNTs). GNP‐ and CNT‐coated electrodes were then applied for electrochemical oxidation of endocrine‐disrupting chemicals. The GNP‐coated electrode was characterized by atomic force microscopy and electrochemical techniques. Compared with the CNT‐coated electrode, higher peak current for the oxidation of 4‐nonylphenol is achieved on the GNP‐coated electrode, together with lower capacitive current. Electrochemical oxidation of 2,4‐dichlorophenol, bisphenol A, and octylphenol in the absence or presence of 4‐nonylphenol was studied on the GNP‐coated electrode. The results suggest that GNPs have better electrochemical performance than CNTs and are thus more promising for electrochemical applications, for example, electrochemical detection and removal of endocrine‐disrupting chemicals.  相似文献   

13.
Zhao YD  Zhang WD  Chen H  Luo QM 《Talanta》2002,58(3):529-534
Carbon nanotube powder microelectrodes (CNTPMEs) were used to study the anodic oxidation of hydrazine at Carbon nanotube (CNT)-the novel carbon material. It was found that the electrochemical behaviours were greatly improved at CNTs, indicating that the anodic oxidation could be catalyzed at CNTs. The kinetics parameters of this process were calculated, the heterogeneous electron transfer rate constant k was 0.0019 cm s(-1), (1-alpha)n(alpha) was 0.22. The CNTPMEs were also found with high sensitivity for hydrazine detection, could be used as hydrazine sensors.  相似文献   

14.
碳纳米管独特的几何和电子结构使其具有丰富优异的性质,因此在过去的二十余年备受研究者的关注。然而,碳纳米管结构的多样性成为其从实验室走到产业化的最大阻碍,结构决定性质,制备决定未来,完善的结构控制制备技术将成为碳纳米管基础研究和产业化应用中至关重要的一环。本文首先对碳纳米管的结构进行描述,然后综述了碳纳米管的结构可控制备方法和溶液纯化分离技术,提出未来理想的碳纳米管制备之路是将碳纳米管精细结构控制方法与宏量制备技术相结合,在降低碳纳米管生产成本的同时,提高其纯度,并建立碳纳米管产品的标准。最后,展望了碳纳米管的杀手锏级应用和该领域的机遇和挑战。  相似文献   

15.
The composition and electronic structure of cadmium sulfide (CdS) nanoparticles formed by the Langmuir–Blodgett (LB) technique on clean silicon wafers and the surface of vertically aligned carbon nanotube (CNT) arrays are studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The samples were annealed in a vacuum at 175 °C and 225 °C to remove the organic matrix of the LB film. From the analysis of the XPS data the increased concentration of sulfate groups on the surface of CdS nanoparticles formed on CNTs and the electron density transfer from CdS to CNTs are determined. An increase in the LB film annealing temperature causes an increase in the degree of crystallinity and the CdS crystallite size and a decrease in the photoluminescence intensity of a CdS–CNT hybrid.  相似文献   

16.
Pt/C和Pt/CNTs电极的电化学稳定性研究   总被引:1,自引:0,他引:1  
邵玉艳  尹鸽平  高云智 《化学学报》2006,64(16):1752-1756
采用恒电位氧化法研究了Pt/C和Pt/CNTs电极的电化学稳定性. 相同条件下, Pt/C电极的氧化电流大约为Pt/CNTs电极的2倍; 120 h氧化后, Pt/C电极Pt的电化学表面积下降了21.3%, 而Pt/CNTs电极仅下降了7.6%, 表明Pt/CNTs电极性能衰减较慢. X射线光电子能谱(XPS)分析表明, Pt/C的载体碳黑表面氧增加量大于Pt/CNTs中碳纳米管(CNTs)表面氧的增加量, 说明碳黑的被氧化程度较高, 电化学稳定性差; Pt的表面化学状态没有发生变化; 碳纳米管本身的抗电化学氧化性也大于碳黑. 所以, 载体的被氧化程度不同是两种电极性能衰减不同的主要原因之一, 并且排除了Pt表面状态的影响.  相似文献   

17.
The electrochemical response of a glassy carbon electrode modified with carbon nanotubes (CNT) dispersed in two solvents, water and DMF, and two polymers, chitosan and Nafion is reported. The films were homogeneous when the dispersing agent was water or DMF. In the case of polymers, the surfaces present areas with different density of CNTs. A more sensitive electrochemical response was obtained when CNTs are dispersed in the solvents. In the case of CNT dispersed with polymers, the nature of the polymer demonstrated to be a critical parameter not only for dispersing the nanotubes but also for the electrochemical activity of the resulting electrodes.  相似文献   

18.
探讨了聚合物对碳纳米管的不同表面修饰作用,总结了聚合物对碳纳米管的共价与非共价修饰方法,修饰后的碳纳米管在水溶液或不同极性有机溶剂、聚合物本体中的分散性得到了改善,更为碳纳米管的阵列化提供了前提.以碳纳米管的后排列为中心,主要综述了聚合物辅助下的碳纳米管垂直和水平方向上的定向排列方法,及近年来碳纳米管阵列化的研究进展,阐述了聚合物对碳纳米管的表面修饰及辅助碳纳米管实现阵列化的重要作用,提出了利用聚合物体系的自组织特性诱导碳纳米管自组装阵列化可以为实现单根碳纳米管的定向定位控制及纳米尺度功能器件的制备提供更多的可能.  相似文献   

19.
Glassy-carbon electrodes (GCEs) are modified with preoxidized multiwalled carbon nanotubes (CNTs). According to the data of atomic force microscopy, the layers of CNTs on GCEs possess a homogeneous nanostructurized surface. The voltammetric properties of a GCE/CNT depend on the modifier load. Guanine and deoxyguanosine monophosphate are strongly adsorbed on GCE/CNT and oxidized at +690 and +930 mV (pH 7.0), respectively. The oxidation current of guanine DNA nucleotides adsorbed on a GCE/CNT is significantly higher for the thermally denaturated biopolymer than for the native one. Our results are of interest for the development of sensors based on the electrochemical properties of nucleic acids.  相似文献   

20.
以具有三维开放网络结构的薄层大面积烧结8 μm金属纤维(SMF-Ni, SMF-SS(316L不锈钢))为基底, 通过乙烯催化化学气相沉积在金属纤维表面生长碳纳米管(CNTs)的方法, 制备了整体式CNTs/SMF-Ni (CNTs: 50% (w))和CNTs/SMF-SS (CNTs: 40% (w))复合材料. 研究表明, 以CNTs/SMF-Ni 为阴极材料、SMF-SS为阳极材料, 具有很高的直接电催化氧气氧化对甲氧基甲苯(茴香醚)合成对甲氧基苯甲醛(茴香醛) 的活性, 反应物转化率和产物选择性分别达95.4%和96.5%, 电流效率可超过80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号