首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hydration structure of Cr(2+) has been studied using molecular dynamics (MD) simulations including three-body corrections and combined ab initio quantum mechanical/molecular mechanical (QM/MM) MD simulations at the Hartree-Fock level. The structural properties are determined in terms of radial distribution functions, coordination numbers, and several angle distributions. The mean residence time was evaluated for describing ligand exchange processes in the second hydration shell. The Jahn-Teller distorted octahedral [Cr(H(2)O)(6)](2+) complex was pronounced in the QM/MM MD simulation. The first-shell distances of Cr(2+) are in the range of 1.9-2.8 A, which are slightly larger than those observed in the cases of Cu(2+) and Ti(3+). No first-shell water exchange occurred during the simulation time of 35 ps. Several water-exchange processes were observed in the second hydration shell with a mean residence time of 7.3 ps.  相似文献   

2.
3.
Combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations, including only the first and the first and second hydration shells in the QM region, were performed for TiIII in aqueous solution. The hydration structure of TiIII is discussed in terms of radial distribution functions, coordination-number distributions and several angle distributions. Dynamical properties, such as librational and vibrational motions and TiIII-O vibrations, were evaluated. A fast dynamical Jahn-Teller effect of TiIII(aq) was observed in the QM/MM simulations, in particular when the second hydration shell was included into the QM region. The results justify the computational effort required for the inclusion of the second hydration shell into the QM region and show the importance of this effort for obtaining accurate hydration-shell geometries, dynamical properties, and details of the Jahn-Teller effect.  相似文献   

4.
Ab initio QM/MM MD simulations have allowed to clarify some of the ambiguities arising from various studies on the hydrated La(III) ion. Both nine- and ten-coordinated hydrates co-exist and interchange in a dissociative process on the nano- or even subnanosecond scale, and thus much faster than any other trivalent main group or transition metal ions. The weak ion–ligand bond (53 N/m) supplies a reasonable explanation for it. The simulation results for La(III) are also compared to those for the isoelectronic ions Cs(I) and Ba(II) obtained by the same ab initio MD procedure, leading to conclusions on the influence of central ion charge on structural and dynamic properties of hydrate complexes.  相似文献   

5.
The structural and dynamical properties of high-spin Ru2+ in aqueous solution have been theoretically studied using molecular dynamics (MD) simulations. The conventional MD simulation based on pair potentials gives the overestimated average first shell coordination number of 9, whereas the value of 5.9 was observed when the three-body corrected function was included. A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to take into account the many-body effects on the hydration shell structure of Ru2+. The most important region, the first hydration shell, was treated by ab initio quantum mechanics at UHF level using the SBKJC VDZ ECP basis set for Ru2+ and the 6-31G basis sets for water. An exact coordination number of 6 for the first hydration shell was obtained from the QM/MM simulation. The QM/MM simulation predicts the average Ru2+–O distance of 2.42 Å for the first hydration shell, whereas the values of 2.34 and 2.46 Å are resulted from the pair potentials without and with the three-body corrected simulations, respectively. Several other structural properties representing position and orientation of the solvate molecules were evaluated for describing the hydration shell structure of the Ru2+ ion in dilute aqueous solution. A mean residence time of 7.1 ps was obtained for water ligands residing in the second hydration shell.  相似文献   

6.
A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to investigate solvation structure and dynamics of NH(4) (+) in water. The most interesting region, the sphere includes an ammonium ion and its first hydration shell, was treated at the Hartree-Fock level using DZV basis set, while the rest of the system was described by classical pair potentials. On the basis of detailed QM/MM simulation results, the solvation structure of NH(4) (+) is rather flexible, in which many water molecules are cooperatively involved in the solvation shell of the ion. Of particular interest, the QM/MM results show fast translation and rotation of NH(4) (+) in water. This phenomenon has resulted from multiple coordination, which drives the NH(4) (+) to translate and rotate quite freely within its surrounding water molecules. In addition, a "structure-breaking" behavior of the NH(4) (+) is well reflected by the detailed analysis on the water exchange process and the mean residence times of water molecules surrounding the ion.  相似文献   

7.
Structure and dynamics of hydrated Au(+) have been investigated by means of molecular dynamics simulations based on ab initio quantum mechanical molecular mechanical forces at Hartree-Fock level for the treatment of the first hydration shell. The outer region of the system was described using a newly constructed classical three-body corrected potential. The structure was evaluated in terms of radial and angular distribution functions and coordination number distributions. Water exchange processes between coordination shells and bulk indicate a very labile structure of the first hydration shell whose average coordination number of 4.7 is a mixture of 3-, 4-, 5-, 6-, and 7-coordinated species. Fast water exchange reactions between first and second hydration shell occur, and the second hydration shell is exceptionally large. Therefore, the mean residence time of water molecules in the first hydration shell (5.6 ps/7.5 ps for t*= 0.5 ps/2.0 ps) is shorter than that in the second shell (9.4 ps/21.2 ps for t*= 0.5 ps/2.0 ps), leading to a quite specific picture of a "structure-breaking" effect.  相似文献   

8.
Structure and dynamics investigations of Ag(+) in 18.6% aqueous ammonia solution have been carried out by means of the ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulation method. The most important region, the first solvation shell, was treated by ab initio quantum mechanics at the Restricted Hartree-Fock (RHF) level using double-zeta plus polarization basis sets for ammonia and plus ECP for Ag(+). For the remaining region in the system, newly constructed three-body corrected potential functions were used. The average composition of the first solvation shell was found to be [Ag(NH(3))(2)(H(2)O)(2.8)](+). No ammonia exchange process was observed for the first solvation shell, whereas ligand exchange processes occurred with a very short mean residence time of 1.1 ps for the water ligands. No distinct second solvation shell was observed in this simulation.  相似文献   

9.
A molecular dynamics (MD) simulation based on a combined ab initio quantum mechanics/molecular mechanics (QM/MM) method has been performed to investigate the solvation structure and dynamics of H3O+ in water. The QM region is a sphere around the central H3O+ ion, and contains about 6-8 water molecules. It is treated at the Hartree-Fock (HF) level, while the rest of the system is described by means of classical pair potentials. The Eigen complex (H9O4+) is found to be the most prevalent species in the aqueous solution, partly due to the selection scheme of the center of the QM region. The QM/MM results show that the Eigen complex frequently converts back and forth into the Zundel (H5O2+) structure. Besides the three nearest-neighbor water molecules directly hydrogen-bonded to H3O+, other neighbor waters, such as a fourth water molecule which interacts preferentially with the oxygen atom of the hydronium ion, are found occasionally near the ion. Analyses of the water exchange processes and the mean residence times of water molecules in the ion's hydration shell indicate that such next-nearest neighbor water molecules participate in the rearrangement of the hydrogen bond network during fluctuative formation of the Zundel ion and, thus, contribute to the Grotthuss transport of the proton.  相似文献   

10.
Ab initio molecular dynamics (AIMD) simulations for the excited-state hydrogen transfer (ESHT) reaction of 7-azaindole (7AI-(H2O)n; n = 1, 2) clusters in the gas phase and in water are presented. The effective fragment potential (EFP) is employed to model the surrounding water molecules. The AIMD simulations for 7AI-H2O and 7AI-(H2O)2 clusters show an asynchronous hydrogen transfer at t approximately 50 fs after the photoexcitation. While the ESHT mechanism for 7AI-H2O in water does not change appreciably compared with that in the gas phase, the AIMD simulations on 7AI-(H2O)2 in water solution exhibit two different mechanisms. Since the tautomer form is lower in energy compared to the normal form in the S1 state, 7AI and (H2O) n fragments separate from each other after the ESHT. With the use of the results of the AIMD trajectories, the minimum energy conical intersection point in the tautomer region has also been located.  相似文献   

11.
Hydration structure and dynamics of an aqueous Sc(iii) solution were characterized by means of an extended ab initio quantum mechanical/molecular dynamical (QM/MM) molecular dynamics simulation at Hartree-Fock level. A monocapped trigonal prismatic structure composed of seven water molecules surrounding scandium(iii) ion was proposed by the QM/MM simulation including the quantum mechanical effects for the first and second hydration shells. The mean Sc(iii)-O bond length of 2.14 ? was identified for six prism water molecules with one capping water located at around 2.26 ?, reproducing well the X-ray diffraction data. The Sc(iii)-O stretching frequency of 432 cm(-1) corresponding to a force constant of 130 N m(-1), evaluated from the enlarged QM/MM simulation, is in good agreement with the experimentally determined value of 430 cm(-1) (128 N m(-1)). Various water exchange processes in the second hydration shell of the hydrated Sc(iii) ion predict a mean ligand residence time of 7.3 ps.  相似文献   

12.
13.
A simulation of phosphate in aqueous solution was carried out employing the new QMCF MD approach which offers the possibility to investigate composite systems with the accuracy of a QMMM method but without the time consuming creation of solute-solvent potential functions. The data of the simulations give a clear picture of the hydration shells of the phosphate anion. The first shell consists of 13 water molecules and each oxygen of the phosphate forms in average three hydrogens bonds to different solvent molecules. Several structural parameters such as radial distribution functions and coordination number distributions allow to fully characterize the embedding of the highly charged phosphate ion in the solvent water. The dynamics of the hydration structure of phosphate are described by mean residence times of the solvent molecules in the first hydration shell and the water exchange rate.  相似文献   

14.
Structure and dynamics investigations of Au(I) ion in liquid ammonia have been performed by means of a molecular dynamics simulation based on ab initio quantum mechanical/molecular mechanical forces, where the first solvation shell was treated by quantum mechanics at Hartree-Fock level. The outer region of the system was described using a newly constructed classical three-body corrected potential. A rigid structure of the first solvation shell was observed with an average Au-N distance of 2.15 A and a coordination number of 2.0.  相似文献   

15.
Structural and dynamical properties of the hydrated Sn(II) ion have been investigated by ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations at double-zeta HF quantum mechanical level. The results indicate Sn(II)aq to be a rather peculiar, if not unique, case of a hydrated ion: four of its eight first-shell ligands do not take place in the otherwise frequent ligand-exchange processes, forming an approximately tetrahedral cage around the ion. The remaining ligands, however, exchange at a rate that is rather comparable to monovalent than divalent ions. This very surprising behavior of ligand exchange not yet observed in any previous simulation of over 30 hydrated metal ions is consistently confirmed by vibrational spectra, bond lengths, and a detailed analysis of the trajectories of the simulation.  相似文献   

16.
We present first principles calculations of the NMR solvent shift of adenine in aqueous solution. The calculations are based on snapshots sampled from a molecular dynamics simulation, which were obtained via a hybrid quantum-mechanical/mechanical modeling approach, using an all-atom force field (TIP3P). We find that the solvation via the strongly fluctuating hydrogen bond network of water leads to nontrivial changes in the NMR spectra of the solutes regarding the ordering of the resonance lines. Although there are still sizable deviations from experiment, the overall agreement is satisfactory for the 1H and 15N NMR shifts. Our work is another step toward a realistic first-principles prediction of NMR chemical shifts in complex chemical environments.  相似文献   

17.
18.
Ab initio QM/MM dynamics simulation is employed to examine the stability of the tetrahedral intermediate during the deacylation step in elastase-catalyzed hydrolysis of a simple peptide. An extended quantum region includes the catalytic triad, the tetrahedral structure, and the oxyanion hole. The calculations indicate that the tetrahedral intermediate of serine proteases is a stable species on the picosecond time scale. On the basis of geometrical and dynamical properties, and in agreement with many experimental and theoretical studies, it is suggested that the crucial hydrogen bonds involved in stabilizing this intermediate are between Asp-102 and His-57 and between the charged oxygen of the intermediate and the backbone N-H group of Gly-193 in the oxyanion hole. The mobility of the imidazolium ring between O(w) and O(gamma), two of the oxygens of the tetrahedral structure, shows how the intermediate could proceed toward the product state without a "ring-flip mechanism", proposed earlier on the basis of NMR data. In addition to the proposed C(epsilon)(1)-H.O hydrogen bond between the imidazolium ring and the backbone carbonyl of Ser-214, we observe an alternative C(epsilon)(1)-H.O hydrogen bond with the backbone carbonyl of Thr-213, that can stabilize the intermediate during the imidazolium movement. Proton hopping occurs between Asp-102 and His-57 during the simulation. The proton is, however, largely localized on the nitrogen, and hence it does not participate in a low-barrier hydrogen bond. The study also suggests factors that may be implicated in product release: breaking the hydrogen bond of the charged oxygen with the backbone of Ser-195 in the oxyanion hole and a loop opening between residues 216-225 that enables the breaking of a hydrogen bond in subsite S(3).  相似文献   

19.
Structural and dynamical properties of the TiO(2+) ion in aqueous solution have been investigated by using the new ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism, which does not require any other potential functions except those for solvent-solvent interactions. Both first and second hydration shell have been treated at Hartree-Fock (HF) quantum mechanical level. A Ti-O bond distance of 1.5 A was observed for the [Ti=O](2+) ion. The first hydration shell of the ion shows a varying coordination number ranging from 5 to 7, five being the dominant one and representing one axial and four equatorial water molecules directly coordinated to Ti, which are located at 2.3 A and 2.1 A, respectively. The flexibility in the coordination number reflects the fast exchange processes, which occur only at the oxo atom, where water ligands are weakly bound through hydrogen bonds. Considering the first shell hydration, the composition of the TiO(2+) hydrate can be characterized as [(H(2)O)(0.7)(H(2)O)(4) (eq)(H(2)O)(ax)](2+). The second shell consists in average of 12 water molecules located at a mean distance of 4.4 A. Several other structural parameters such as radial and angular distribution functions and coordination number distributions were analyzed to fully characterize the hydration structure of the TiO(2+) ion in aqueous solution. For the dynamics of the TiO(2+) ion, different sets of dynamical parameters such as Ti=O, Ti-O(eq), and Ti-O(ax) stretching frequencies and ligands' mean residence times were evaluated. During the simulation time of 15 ps, 3 water exchange processes in the first shell were observed at the oxo atom, corresponding to a mean residence time of 3.6 ps. The ligands' mean residence time for the second shell was determined as 3.5 ps.  相似文献   

20.
Structural properties of the hydrated Rb(I) ion have been investigated by ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations at the double-zeta HF quantum mechanical level. The first shell coordination number was found to be 7.1, and several other structural parameters such as angular distribution functions, radial distribution functions and tilt- and theta-angle distributions allowed the full characterization of the hydration structure of the Rb(I) ion in dilute aqueous solution. Velocity autocorrelation functions were used to calculate librational and vibrational motions, ion-ligand motions, as well as reorientation times. Different dynamical parameters such as water reorientation, mean ligand residence time, the number of ligand exchange processes, and rate constants were also analyzed. The mean ligand residence time for the first shell was determined as tau = 2.0 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号