首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
首先利用含有三嗪的芳香酰肼(3)构筑了1,3,4-噁二唑衍生物(5), 然后将化合物5与含有1,3,4-噻二唑的衍生物(6)拼合合成了18个目标分子. 利用红外光谱(IR)、 核磁共振波谱(NMR)和高分辨质谱(HRMS)等技术对其结构进行了表征. 考察了目标分子对细胞分裂周期25磷酸酯酶B(Cdc25B)和蛋白酪氨酸磷酸酯酶1B(PTP1B)的抑制活性. 结果表明, 有8个目标分子的抑制活性优于其阳性对照物, 有望成为潜在的Cdc25B抑制剂; 有12个目标分子的抑制活性优于其对照物, 有望成为潜在的PTP1B抑制剂.  相似文献   

3.
The chemical composition and the biological activities of aromatic plants may be influenced by seasonal changes. Therefore, the essential oil of Inula graveolens (IGEO), collected at Chebba salt marsh, was studied in terms of yields, compositions and biological activities, throughout four different seasons, namely spring, summer, autumn and winter (April, July, October and January, respectively). GC/MS analysis identified 30 compounds. Mostly quantitative rather than qualitative, variation was observed in the oil composition of each sample. It had been revealed a predominant presence of bornyl acetate and borneol, as well as significant differences of several compound amounts in function of the seasonal change. Biological activities were also related to the harvest season; hence, IGEO from spring gave the best antioxidant activity results and IGEO from autumn seemed to be the most potent against pathogenic microorganisms, while oils from summer and winter were the strongest inhibitors of acetylcholinesterase and tyrosinase.A matrix linking IGEO major compounds to biological was composed to identify relationships between concentrations of the volatile molecules and the biological activities of the samples. Furthermore, the seasonal variation of these main volatile constituents was also investigated through principal compound analysis (PCA). The obtained results revealed that each biological activity depends on the seasonal fluctuation of the amounts of certain chemical compounds.  相似文献   

4.
Lactacystin and salinosporamide A are fascinating molecules with regard to both their chemical structures and biological activities. These naturally occurring compounds are potent and selective proteasome inhibitors. The molecular structures are characterized by their densely functionalized γ‐lactam cores. The structure and biological properties of these two compounds are attracting the attention of many chemists as challenging synthetic targets. We discuss their synthetic strategies in this review.  相似文献   

5.
The naturally occurring saponins exhibit remarkable interfacial activity and also possess many biological activities linking to human health benefits, which make them particularly attractive as bifunctional building blocks for formulation of colloidal multiphase food systems. This review focuses on two commonly used food-grade saponins, Quillaja saponins (QS) and glycyrrhizic acid (GA), with the aim of clarifying the relationship between the structural features of saponin molecules and their subsequent self-assembly and interfacial properties. The recent applications of these two saponins in various colloidal multiphase systems, including liquid emulsions, gel emulsions, aqueous foams and complex emulsion foams, are then discussed. A particular emphasis is on the unique use of GA and GA nanofibrils as sole stabilizers for fabricating various multiphase food systems with many advanced qualities including simplicity, ultrastability, stimulability, structural viscoelasticity and processability. These natural saponin and saponin-based colloids are expected to be used as sustainable, plant-based ingredients for designing future foods, cosmetics and pharmaceuticals.  相似文献   

6.
In this study, based on molecular docking analysis and comparative molecular field analysis (CoMFA) modelling of a series of 71 CD38 inhibitors including 4?amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides, new CD38 inhibitors were designed. The interactions of the molecules with the greatest and the lowest activities with the nicotinamide mononucleotide (NMN) binding site were investigated by molecular docking analysis. A CoMFA model with four partial least squares regression (PLSR) components was developed to predict the CD38 inhibitory activity of the molecules. The r2 values for the training and test sets were 0.89 and 0.82, respectively. The Q2 values for leave-one-out cross-validation (LOO-CV) and leave-many-out cross-validation (LMO-CV) tests on the training set were 0.65 and 0.64, respectively. The CoMFA model was validated by calculating several statistical parameters. CoMFA contour maps were interpreted, and structural features that influence the CD38 inhibitory activity of molecules were determined. Finally, seven new CD38 inhibitors with greater activity with respect to the greatest active molecules were designed.  相似文献   

7.
8.
9.
10.
11.
Parallel Screening has been introduced as an in silico method to predict the potential biological activities of compounds by screening them with a multitude of pharmacophore models. This study presents an early application example employing a Pipeline Pilot-based screening platform for automatic large-scale virtual activity profiling. An extensive set of HIV protease inhibitor pharmacophore models was used to screen a selection of active and inactive compounds. Furthermore, we aimed to address the usually critically eyed point, whether it is possible in a parallel screening system to differentiate between similar molecules/molecules acting on closely related proteins, and therefore we incorporated a collection of other protease inhibitors including aspartic protease inhibitors. The results of the screening experiments show a clear trend toward most extensive retrieval of known active ligands, followed by the general protease inhibitors and lowest recovery of inactive compounds.  相似文献   

12.
Hydroxamate, as a zinc-binding group (ZBG), prevails in the design of histone deacetylase 6(HDAC6) inhibitors due to its remarkable zinc-chelating capability. However, hydroxamate-associated genotoxicity and mutagenicity have limited the widespread application of corresponding HDAC6 inhibitors in the treatment of human diseases. To avoid such side effects, researchers are searching for novel ZBGs that may be used for the synthesis of HDAC6 inhibitors. In this study, a series of stereoisomeric compounds were designed and synthesized to discover non-hydroxamate HDAC6 inhibitors using α-amino amide as zinc-ion-chelating groups, along with a pair of enantiomeric isomers with inverted L-shaped vertical structure as cap structures. The anti-proliferative activities were determined against HL-60, Hela, and RPMI 8226 cells, and 7a and its stereoisomer 13a exhibited excellent activities against Hela cells with IC50 = 0.31 µM and IC50 = 5.19 µM, respectively. Interestingly, there is a significant difference between the two stereoisomers. Moreover, an evaluation of cytotoxicity toward human normal liver cells HL-7702 indicated its safety for normal cells. X-ray single crystal diffraction was employed to increase insights into molecule structure and activities. It was found that the carbonyl of the amide bond is on the different side from the amino and pyridine nitrogen atoms. To identify possible protein targets to clarify the mechanism of action and biological activity of 7a, a small-scale virtual screen using reverse docking for HDAC isoforms (1–10) was performed and the results showed that HDAC6 was the best receptor for 7a, suggesting that HDAC6 may be a potential target for 7a. The interaction pattern analysis showed that the α-amino amide moiety of 7a coordinated with the zinc ion of HDAC6 in a bidentate chelate manner, which is similar to the chelation pattern of hydroxamic acid. Finally, the molecular dynamics simulation approaches were used to assess the docked complex’s conformational stability. In this work, we identified 7a as a potential HDAC6 inhibitor and provide some references for the discovery of non-hydroxamic acid HDAC6 inhibitors.  相似文献   

13.
14.
新型光系统II抑制剂的设计、合成和生物活性测定   总被引:1,自引:0,他引:1  
根据药效团模型,合理设计并合成了新型光系统II(PSII)抑制剂化合物,进行 了元素分析和红外、紫外及核磁数据表征。希尔反应测试表明,亿合成的化合物均 具有抑制光系统II电子传递功能的生物活性,有的化合物活性较高,为新型PSII除 草剂的开发显示了广阔的应用前景。  相似文献   

15.
The pathogenesis of colorectal cancer is a multifactorial process. Dysbiosis and the overexpression of COX-2 and LDHA are important effectors in the initiation and development of the disease through chromosomal instability, PGE2 biosynthesis, and induction of the Warburg effect, respectively. Herein, we report the in vitro testing of some new quinoxalinone and quinazolinone Schiff’s bases as: antibacterial, COX-2 and LDHA inhibitors, and anticolorectal agents on HCT-116 and LoVo cells. Moreover, molecular docking and SAR analyses were performed to identify the structural features contributing to the biological activities. Among the synthesized molecules, the most active cytotoxic agent, (6d) was also a COX-2 inhibitor. In silico ADMET studies predicted that (6d) would have high Caco-2 permeability, and %HIA (99.58%), with low BBB permeability, zero hepatotoxicity, and zero risk of sudden cardiac arrest, or mutagenicity. Further, (6d) is not a potential P-gp substrate, instead, it is a possible P-gpI and II inhibitor, therefore, it can prevent or reverse the multidrug resistance of the anticancer drugs. Collectively, (6d) can be considered as a promising lead suitable for further optimization to develop anti-CRC agents or glycoproteins inhibitors.  相似文献   

16.
周梅  章威  成元华  计明娟  徐筱杰 《化学学报》2005,63(23):2131-2136
用一种柔性分子对接方法(FlexX)将12个2-草酰胺苯甲酸类抑制剂和酪氨酸蛋白磷酸酯酶(PTP1B)活性口袋进行分子对接,对接程序预测的抑制剂和酶之间的相互作用能与抑制活性之间有很好的相关性(非线性相关系数R2达0.859),这说明对接结果可以比较准确地预测抑制剂和PTP1B之间的结合模式.然后,将33个同类抑制剂的骨架叠合在分子对接预测的结合构象上,用比较分子力场分析方法(CoMFA)对其进行三维定量活性构效关系研究,得到的CoMFA模型具有很好的统计相关性(交互验证回归系数q2为0.650),并可以准确地预测测试集6个化合物的活性(平均标准偏差为0.177).同时,由CoMFA模型得出的抑制剂改造信息与用FlexX预测的结合模式是一致的,进一步证明我们预测的结合模式是正确的.为研究这类抑制剂和PTP1B的结合模式及对抑制剂进行结构改造提供了信息.  相似文献   

17.
18.
Nowadays, about 150 natural products comprising an allenic or cumulenic structure are known. The chemistry of these compounds has turned out to be a very attractive and prolific area of interest: advances in the isolation and characterization of new allenic natural products have led to the establishment of efficient synthetic procedures which in many cases also open up an access to enantiomerically pure target molecules. Inspired by the intriguing biological activities of many allenic natural products, allene moieties are now systematically introduced in pharmacologically active classes of compounds (steroids, prostaglandins, amino acids, nucleosides). The functionalized allenes thus obtained often exhibit impressive activities as mechanism-based enzyme inhibitors, cytotoxic, or antiviral agents. A prerequisite for further developments in this field is the efficient stereoselective synthesis of allene derivatives.  相似文献   

19.
以分子对接法进行MDL/ACD三维数据库搜寻所得到的大量结构信息为指导, 从中选取部分酰胺类小分子进行化学合成和结构表征. 生物活性测试结果表明, 设计合成的8个酰胺类化合物在200 μg/mL浓度下对水稻KARI酶具有不同程度的抑制活性, 化合物1和6的抑制率可达到57.4%和48.1%. 部分化合物在100 μg/mL浓度下对双子叶植物油菜的胚根和单子叶植物稗草的茎叶的抑制活性较为显著, 化合物1和6对油菜胚根生长抑制率分别为52.0%和72.6%, 其与KARI酶体外(in vitro)抑制活性具有一定的相关性. 这些酰胺类化合物可作为KARI酶抑制剂为后续分子设计提供借鉴.  相似文献   

20.
In this paper, an open tubular affinity capillary electrochromatography (OT‐ACEC) was developed by physical adsorption of rabbit platelets on the inner surface of capillary. The interactions between small molecules include adenosine diphosphate (ADP) (positive control), protocatechuic acid (negative control) and seven natural products (salvianolic acid B, salvianic acid A sodium, hydroxysafflor yellow A, ferulic acid, chlorogenic acid, sinapic acid, caffeic acid) and platelets were evaluated by their retention factors and binding constants obtained based on peak‐shift assay. Then, the activities of anti‐platelet aggregation induced by thrombin (THR), ADP and arachidonic acid (AA) for those small molecules (except ADP) were evaluated by turbidimetric method. The results indicate that: (i) ADP, a platelet aggregation inducer, had strong interaction with platelet, while protocatechuic acid that had no inhibition on platelet aggregation behaved no specific interaction; (ii) there was a positive correlation between the anti‐platelet aggregation activities of small molecules and their interactions with platelet, generally those compounds with higher binding constants with platelet exhibited higher activities. Therefore, the OT‐ACEC method developed in the present study can be a potential method to evaluate affinity interactions between small molecules and platelets, so as to predict the biological activities such as anti‐platelet aggregation for the small molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号