首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Luminescent CuI complexes have emerged as promising substitutes for phosphorescent emitters based on Ir, Pt and Os due to their abundance and low cost. The title heteroleptic cuprous complex, [9,9‐dimethyl‐4,5‐bis(diphenylphosphanyl)‐9H‐xanthene‐κ2P ,P ](2‐methylquinolin‐8‐ol‐κ2N ,O )copper(I) hexafluorophosphate, [Cu(C10H9NO)(C39H32OP2)]PF6, conventionally abbreviated as [Cu(Xantphos)(8‐HOXQ)]PF6, where Xantphos is the chelating diphosphine ligand 9,9‐dimethyl‐4,5‐bis(diphenylphosphanyl)‐9H‐xanthene and 8‐HOXQ is the N ,O‐chelating ligand 2‐methylquinolin‐8‐ol that remains protonated at the hydroxy O atom, is described. In this complex, the asymmetric unit consists of a hexafluorophosphate anion and a whole mononuclear cation, where the CuI atom is coordinated by two P atoms from the Xantphos ligand and by the N and O atoms from the 8‐HOXQ ligand, giving rise to a tetrahedral CuP2NO coordination geometry. The electronic absorption and photoluminescence properties of this complex have been studied on as‐synthesized samples, whose purity had been determined by powder X‐ray diffraction. In the detailed TD–DFT (time‐dependent density functional theory) studies, the yellow emission appears to be derived from the inter‐ligand charge transfer and metal‐to‐ligand charge transfer (M +L ′)→LCT excited state (LCT is ligand charge transfer).  相似文献   

2.
Luminescent cuprous complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The title heteroleptic cuprous complex, [2,2′-bis(diphenylphosphanyl)-1,1′-binaphthyl-κ2P,P′](2-phenylpyridine-κN)copper(I) hexafluoridophosphate, rac-[Cu(C44H32P2)(C11H9N)]PF6, conventionally abbreviated rac-[Cu(BINAP)(2-PhPy)]PF6 ( I ), where BINAP and 2-PhPy represent 2,2′-bis(diphenylphosphanyl)-1,1′-binaphthyl and 2-phenylpyridine, respectively, is described. In this complex, the asymmetric unit consists of a hexafluoridophosphate anion and a heteroleptic cuprous complex cation, in which the cuprous centre in a CuP2N coordination triangle is coordinated by two P atoms from the BINAP ligand and by one N atom from the 2-PhPy ligand. Time-dependent density functional theory (TD–DFT) calculations show that the UV–Vis absorption of I should be attributed to ligand-to-ligand charge transfer (LLCT) characteristic excited states. It was also found that the paper-based film of this complex exhibited obvious luminescence light-up sensing for pyridine.  相似文献   

3.
Quinoxaline-bridged bidentate bis-imidazolium dicarbene ligand 1,1′-(quinoxaline-2,3-diyl)bis(3-methyl-1H-imidazol-3-ium) hexafluorophosphate salt H2L·2PF6 (3) was prepared by a two-step reaction based on 2,3-bis(imidazol-1-yl)quinoxaline (1). First, the 2,3-bis(imidazol-1-yl)quinoxaline reacted with CH3I resulting in the 1,1′-(quinoxaline-2,3-diyl)bis(3-methyl-1H-imidazol-3-ium) iodide salt H2L·2I (2), then through anion exchange reactions with NH4PF6 in water produced the desired bis-imidazolium bidentate ligand H2L·2PF6 (3). Reaction of the bidentate bis-imidazolium ligands H2L·2PF6 (3) with Ag2O in acetonitrile gave the macrocyclic binuclear silver(I) carbene complex [Ag2(L)2]·2PF6·CH3CN (4). Nickel carbene complex [Ni(L)PPh3Cl]·PF6·2DMSO (5) was obtained via transmetalation of 4 with Ni(PPh3)2Cl2 in DMSO. The bidentate carbene ligand is a chelating ligand in 5, while bridging in 4. The imidazolium ligand H2L·2PF6 (3) and transition metal carbene complexes 4 and 5 have been fully characterized by elemental analysis, NMR, ESI-MS spectroscopy, and X-ray diffraction analyses. Furthermore, the UV and luminescent properties of 35 were also studied.  相似文献   

4.
Three four-coordinate N-heterocyclic carbene (NHC) copper(I) complexes, [Cu(Py-Im)(POP)](PF6) (P1), [Cu(Py-BenIm)(POP)](PF6) (P2), and [Cu(Py-c-BenIm)(POP)](PF6) (P3) (Py-Im = 3-methyl-1-(pyridin-2-yl)-1H-imidazolylidene, Py-BenIm = 3-methyl-1-(pyridin-2-yl)-1H-benzo[d]imidazolylidene, Py-c-BenIm = 3-methyl-1-(pyridin-2-ylmethyl)-1H-benzo[d]imidazolylidene, POP = bis([2-diphenylphosphino]-phenyl)ether), have been synthesized without transmetalation of the NHC–Ag(I) complex for the first time. The photophysical properties of the resultant NHC–Cu(I) complexes have been systematically investigated via spectroscopic methods. All complexes exhibit good photoluminescence properties with long excited-state lifetimes and moderate quantum yields. Density functional theory and time dependent density functional theory calculations were employed to rationalize the photophysical properties of the NHC–Cu(I) complexes.  相似文献   

5.
Luminescent cuprous complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The heteroleptic cuprous complex solvate rac‐(acetonitrile‐κN)(3‐aminopyridine‐κN)[2,2′‐bis(diphenylphosphanyl)‐1,1′‐binaphthyl‐κ2P,P′]copper(I) hexafluoridophosphate dichloromethane monosolvate, [Cu(C5H6N2)(C2H3N)(C44H32P2)]PF6·CH2Cl2, conventionally abbreviated as [Cu(3‐PyNH2)(CH3CN)(BINAP)]PF6·CH2Cl2, ( I ), where BINAP and 3‐PyNH2 represent 2,2′‐bis(diphenylphosphanyl)‐1,1′‐binaphthyl and 3‐aminopyridine, respectively, is described. In this complex solvate, the asymmetric unit consists of a cocrystallized dichloromethane molecule, a hexafluoridophosphate anion and a complete racemic heteroleptic cuprous complex cation in which the cuprous centre, in a tetrahedral CuP2N2 coordination, is coordinated by two P atoms from the BINAP ligand, one N atom from the 3‐PyNH2 ligand and another N atom from a coordinated acetonitrile molecule. The UV–Vis absorption and photoluminescence properties of this heteroleptic cuprous complex have been studied on polycrystalline powder samples, which had been verified by powder X‐ray diffraction before recording the spectra. Time‐dependent density functional theory (TD‐DFT) calculations and a wavefunction analysis reveal that the orange–yellow phosphorescence emission should originate from intra‐ligand (BINAP) charge transfer mixed with a little of the metal‐to‐ligand charge transfer 3(IL+ML)CT excited state.  相似文献   

6.
The photoexcitation of a triangular silver(I) hydride complex, [Ag33-H)(μ2-dcpm)3](PF6)2 ([ P ](PF6)2, dcpm=bis(dicyclohexylphosphino)methane), designed with “UV-silent” bis-phosphine ligands, provokes hydride-to-Ag3 single and double electron transfer. The nature of the electronic transitions has been authenticated by absorption and photodissociation spectroscopy in parallel with high-level quantum-chemical computations utilizing the GW method and Bethe–Salpeter equation (GW-BSE). Specific photofragments of mass-selected [ P ]2+ ions testify to charge transfer and competing pathways resulting from the unique [Ag33-H)]2+ scaffold. This structural motif of [ P ](PF6)2 has been unequivocally verified by 1H NMR spectroscopy in concert with DFT and X-ray diffraction structural analysis, which revealed short equilateral Ag–Ag distances (dAgAg=3.08 Å) within the range of argentophilic interactions. The reduced radical cation [ P ] . + exhibits strong oxophilicity, forming [ P +O2] .+ ,which is a model intermediate for silver oxidation catalysis.  相似文献   

7.
Abstract

The novel bipyridine–terpyridine–phenazine ligand 6-pyrid-(tetrapyrido[2,3-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j]phenazine (I) was prepared by condensation reaction of 5,6-diamino-l,10-phenanthroline (4) and 2-(pyrid-2′-yl)-1,10-phenanthroline-5,6-dione (6) and characterized using conventional methods. Poor solubility of the ligand led us to the preparation of its Ru(II) complexes to investigate the change in its solubility for further characterizing the ligand on the metal ion. [Ru(ttp)(I)](PF6)2 complex was prepared using the reaction of the ligand (I) and [Ru(ttp)Cl3] complex, where ttp is 4′-(4-Methylphenyl)-2,2′:6′,2′′-terpyridine. A different route for the preparation of [Ru(ttp)(I)](PF6)2 was introduced. Synthesis of the ligand (I) on the complex by a condensation reaction of [Ru(ttp)(6)](PF6)2, where ligand (6) is 2-(pyrid-2′-yl)-1,10-phenanthroline-5,6-dione, with 5,6-diamino-l,10-phenanthroline (4) was conducted. The spectroscopic measurements of both products which have been obtained through the two different routes were compared. We observed that the NMR, LC-MS, and UV spectra of the both products were identical.  相似文献   

8.
A homoleptic organometallic FeIV complex that is stable in both solution and in the solid state at ambient conditions has been synthesized and isolated as [Fe(phtmeimb)2](PF6)2 (phtmeimb=[phenyl(tris(3-methylimidazolin-2-ylidene))borate]). This FeIV N-heterocyclic carbene (NHC) complex was characterized by 1H NMR, HR-MS, elemental analysis, scXRD analysis, electrochemistry, Mößbauer spectroscopy, and magnetic susceptibility. The two latter techniques unequivocally demonstrate that [Fe(phtmeimb)2](PF6)2 is a triplet FeIV low-spin S=1 complex in the ground state, in agreement with quantum chemical calculations. The electronic absorption spectrum of [Fe(phtmeimb)2](PF6)2 in acetonitrile shows an intense absorption band in the red and near IR, due to LMCT (ligand-to-metal charge transfer) excitation. For the first time the excited state dynamics of a FeIV complex was studied and revealed a ≈0.8 ps lifetime of the 3LMCT excited state of [Fe(phtmeimb)2](PF6)2 in acetonitrile.  相似文献   

9.
合成了邻菲罗啉衍生物联吡啶[3,2-a:2',3'-c]-7-氮杂-吩嗪(dpapz)及其铜(I)配合物[Cu(dpapz)2]PF6, 利用核磁共振氢谱(1H NMR), 傅里叶变换红外(FTIR)光谱, 高分辨质谱(HR ESI-MS)等对合成的化合物进行了表征.采用紫外-可见吸收光谱,荧光光谱, DNA熔解温度实验和循环伏安方法研究了dpapz和[Cu(dpapz)2]PF6与小牛胸腺DNA(CT DNA)的相互作用. 配体dpapz与小牛胸腺DNA(CT DNA)作用时未观察到吸收峰红移并且减色效应较小(<30%), 且DNA熔解温度也上升较小(ΔTm=7.8 ℃), 说明dpapz以沟槽结合的方式与CT DNA相互作用. 而[Cu(dpapz)2]PF6与CT DNA作用时, 可观测到较小的吸收峰红移(2-3 nm)和较大的减色效应(>50%), 同时DNA熔解温度上升较大(ΔTm=11.1 ℃), 表明[Cu(dpapz)2]PF6以静电相互作用和部分扦插的方式与DNA结合. 溴乙锭(EB)荧光竞争实验和循环伏安实验进一步证实了这一结论. 配体dpapz和[Cu(dpapz)2]PF6与DNA的结合常数分别为2.88×105和5.32×105 mol·L-1. 光照条件下, [Cu(dpapz)2]PF6产生单重态氧的能力与dpapz相当, 但产生超氧负离子自由基的能力要弱于dpapz. 活性氧猝灭实验表明, 超氧负离子自由基、单重态氧和羟基自由基均参与了dpapz和[Cu(dpapz)2]PF6对DNA的光损伤作用. [Cu(dpapz)2]PF6对DNA的亲和性要高于对dpapz的, 使得[Cu(dpapz)2]PF6对质粒DNA的光损伤效率明显强于dpapz.  相似文献   

10.
In the title heteroleptic cuprous complex, (acetonitrile‐κN)({2‐[2‐(diphenylphosphanyl)phenoxy]phenyl}diphenylphosphane‐κ2P,P′)[2‐(pyridin‐4‐yl‐κN)‐1,3‐benzoxazole]copper(I) hexafluoridophosphate, [Cu(C36H28OP2)(CH3CN)(C12H8N2O)]PF6, conventionally abbreviated [Cu(POP)(CH3CN)(4‐PBO)]PF6, where POP is the diphosphane ligand {2‐[2‐(diphenylphosphanyl)phenoxy]phenyl}diphenylphosphane and 4‐PBO is the N‐containing ligand 2‐(pyridin‐4‐yl)‐1,3‐benzoxazole, the asymmetric unit consists of a hexafluoridophosphate anion and a whole mononuclear cation, where the CuI centre is coordinated by two P atoms from the POP ligand, by one N atom from the 4‐PBO ligand and by the N atom of the coordinated acetonitrile molecule, giving rise to a CuP2N2 distorted tetrahedral coordination geometry. The electronic absorption, photoluminescence and thermal stability properties of this complex have been studied on as‐synthesized samples, which had previously been examined by powder X‐ray diffraction. A yellow emission signal is attributed to an excited state arising from metal‐to‐ligand charge transfer (MLCT).  相似文献   

11.
Four new heteroleptic [Cu(NN)P2]+-type cuprous complexes— 1 -TPP, 2 -POP, 3 -Xantphos, and 4 -DPPF—were designed and synthesized using a diimine ligand 2-(2′-pyridyl)benzoxazole (2-PBO) and different phosphine ligands (TPP, triphenylphosphine; POP, bis[2-(diphenylphosphino)phenyl]ether; Xantphos, 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; DPPF, 1,1′-bis(diphenylphosphino)-ferrocene). All complexes were characterized using single-crystal X-ray diffraction, spectroscopic analysis (infrared, UV–Vis.), elemental analysis, and photoluminescence (PL). Single-crystal X-ray diffraction revealed complexes 1 – 4 as isolated cation complex structures with a tetrahedral CuN2P2 coordination geometry and diverse P–Cu–P angles. Their UV–Vis. absorption spectra exhibited a blue-shift sequence in wavelength with an enlarged P–Cu–P angle from 4 to 2 then to 3 and then to 1 . The PL emission peaks of 1 – 3 also exhibited a similar blue-shift sequence ( 2 → 3 → 1 ). Their PL lifetime in microseconds (~7.5, 5.1, and 4.7 μs for 1 , 2 , and 3 , respectively) indicated that their PL behavior represents phosphorescence. Time-dependent density functional theory (TD-DFT) calculation and wavefunction analysis revealed that S1 and T1 states of 1 – 3 should be assigned as metal–ligand and ligand–ligand charge-transfer (ML + L'L)CT states. Their UV–Vis. absorption and phosphorescence should be attributed to the charge transfer from the P–Cu–P segment to the 2-PBO ligand. Therefore, as the P–Cu–P angle increased (lower HOMO), the energy of S1 and T1 states also increased, following the change of PL color.  相似文献   

12.
The coordination chemistry of cross-conjugated ligands and the effect of cross-conjugation on the nature of metal–metal and metal–ligand interactions have received limited attention. To explore the effects of cross-conjugation eight ruthenium complexes were synthesized, mononuclear complexes of two isomeric cross-conjugated [3]radialenes [RuCp(PPh3)2(L)]PF6 and [{RuCp*(dppe)}(L)]PF6 (L?=?hexakis(4-cyanophenyl)[3]radialene, 2; hexakis(3-cyanophenyl)[3]radialene, 3), and dinuclear complexes [{RuCp(PPh3)2}2(L)](PF6)2 and [{RuCp*(dppe)}2(L)](PF6)2 of the diarylmethane precursors (L?=?4,4′-dicyanodiphenylmethane, 4; 3,3′-dicyanodiphenylmethane, 5) to the [3]radialenes. Considerable synthetic challenges allowed only clean isolation of mononuclear complexes of the multidentate radialenes 2 and 3. As expected, coordinating a positively charged metal induces a red shift for the π–π* transition in complexes of ligand 2, but unexpectedly a blue shift for the same transition in complexes of 3 was observed. This points to conformational differences for the [3]radialene in the ruthenium complexes of the para- (2) versus meta- (3) substituted hexaaryl[3]radialenes. Cyclic voltammetry indicates that the methylene spacer in 4 and 5 does not enable any interaction between metal centers and the absorption behavior is essentially as observed for [Ru(NCPh)(PPh3)2Cp]PF6 and [Ru(NCPh)(dppe)Cp*]PF6 but generally with a slight red shift in absorbance maxima.  相似文献   

13.
14.
Abstract

The complex [Cu(((C6 H5)2 PCH2)3 CCH3) (NCS)] has been prepared and characterized by infrared, PMR, and X-ray photoelectron spectroscopy. It has been formulated as a mixture of N- and S-bonded isomers in the solid state, the ratio of the isomers depending on the conditions of isolation of the complex as well as the sampling technique used for the infrared spectral measurements (i.e., mull vs. KBr pellet). In CHCl3 solution the complex exists exclusively as the N-bonded isomer, although PMR spectroscopy indicates that a rapid exchange of the phosphorus sites of the ligand occurs at room temperature.

The complex [Cu(P(C6 H5)3)2 SCN]2, in contrast, is formulated as a dimeric species in the solid state with two bridging thiocyanates. In CHCl3 solution, however, the bridges cleave to give exclusively the N-bonded monomeric three-coordinate complex.  相似文献   

15.
设计合成新型含氟菲咯啉二齿配体,与六氟磷酸四乙腈合铜及磷配体Xantphos进行配位,得到相应的铜基配合物(CP1~CP4),再以此配合物作为光敏剂用于光催化水解制氢,发现其在均相光解水体系中表现出较好的光敏活性,制氢总转换数(TON)可达896。结合对所选的配合物进行吸收光谱和荧光发射光谱的测试结果可知,此配合物在溶液中也具有很好的稳定性,不会发生配体的重组现象。荧光淬灭实验表明,氧化淬灭为光解水过程中主要的淬灭途径。此外,对这类配合物作为光敏剂的构效关系及其内在机理进行了初步的解释与探讨。  相似文献   

16.
The photophysical behavior of novel bimetallic Ru(II) and Os(II) complexes having a bridging ligand consisting of two terpyridyl moieties covalently linked in the 4′ position through a distyrylbenzene bridge (tp vp vpt) is reported. The Ru(II) complex has a unique red emission with an excited state lifetime nearly 2000-times longer than the parent complex, [Ru(mpt)2](PF6)2 (mpt=4′-(methylphenyl)-2,2′,6′,2″-terpyridine). Combined spectral data suggest the presence of an emissive intra-ligand charge-transfer (ILCT) state lower in energy than the metal-to-ligand charge transfer (MLCT) state. The Os(II) complex exhibits red emission that is similar to that of the parent complex [Os(mpt)2](PF6)2. However, the excited state absorption spectrum reveals a unique transient absorption in the far red that suggests perturbation of the MLCT state by the ILCT state.  相似文献   

17.
The reaction of [Ru(OH2)2(RaaiR′)2]2+ [RaaiR′ = 1-alkyl-2-(arylazo)imidazole, p-R–C6H4–N=N–C3H2–NN(1)–R′, R=H (1), Me (2), Cl (3); R′ = Me (a), Et (b), CH2Ph (c)] with 8-quinolinol (HQ) in acetone solution followed by the addition of NH4PF6 afforded violet, mixed ligand complexes of composition [Ru(Q)(RaaiR′)2](PF6). The structure of [Ru(Q)(MeaaiMe)2](PF6) (2a) has been confirmed by X-ray diffraction studies. Solution electronic spectra exhibit a strong MLCT band at 560–580?nm in MeCN. Cyclic voltammogrames show a Ru(III)/Ru(II) couple at 1.0–1.1?V versus SCE along with three successive ligand reductions. The electronic properties are correlated with EHMO results.  相似文献   

18.
Luminescent cuprous complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The title ionic trinuclear Cu3I2 complex, tris[μ2‐diphenyl(pyridin‐2‐yl)phosphane‐κ2P:N]di‐μ3‐iodido‐tricopper(I)(3 CuCu) hexafluoridophosphate, [Cu3I2(C39H32NP)3]PF6, conventionally abbreviated as [Cu3I2(Ph2PPy)3]PF6, is described. Each CuI atom is coordinated by two μ3‐iodide ligands and by a P and an N atom from two Ph2PPy ligands, giving rise to a CuI2PN tetrahedral coordination geometry about each CuI centre. The electronic absorption and photoluminescence properties of this trinuclear cluster have been studied on as‐synthesized samples, which had been examined previously by powder X‐ray diffraction. A detailed time‐dependent density functional theory (TD–DFT) study was carried out and showed a green emission derived from a halide‐to‐ligand charge transfer and metal‐to‐ligand charge transfer 3(X+M)LCT excited state.  相似文献   

19.
Based on the a ligand BDPPZ [(9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone] (1) and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes, [Ru(bpy)2L](PF6)2 (2), [Ru(phen)2L](PF6)2 (3), [Ru(dafo)2L](PF6)2 (4), [Ru(dcbpy)2L](PF6)2 (5) and [RuL3](PF6)2 (6) (where, L = ligand, bpy = 2,2′‐bipyridine, phen = 1,10‐phenantroline, dafo = 4,5‐diazafluoren‐9‐one and dcbpy = 3,3′‐dicarboxy‐2,2′‐bipyridine), have been synthesized and characterized by elemental analysis, UV–vis, FT‐IR, 1H and 13C‐NMR spectra (for ligand), molar conductivity measurements and X‐ray powder techniques. The electrochemical parameters of the substituted ligand and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes are reported by cyclic voltammetry. UV–vis spectroscopy is used to compare the differences between the conjugated π systems in this ligand and its Ru(II) metal complexes. The polypyridyl hetero‐ and homoleptic Ru(II) metal complexes also tested as catalysts for the formation of cyclic organic carbonates from carbon dioxide and liquid epoxides which served as both reactant and solvent. The results showed that the [Ru(L)3](PF6)2 (6) complex is more efficient than the other Ru(II) complexes for the formation of cyclic organic carbonates from carbon dioxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The crystal structure and in vitro cytotoxicity of the amphiphilic ruthenium complex [ 3 ](PF6)2 are reported. Complex [ 3 ](PF6)2 contains a Ru?S bond that is stable in the dark in cell‐growing medium, but is photosensitive. Upon blue‐light irradiation, complex [ 3 ](PF6)2 releases the cholesterol–thioether ligand 2 and an aqua ruthenium complex [ 1 ](PF6)2. Although ligand 2 and complex [ 1 ](PF6)2 are by themselves not cytotoxic, complex [ 3 ](PF6)2 was unexpectedly found to be as cytotoxic as cisplatin in the dark, that is, with micromolar effective concentrations (EC50), against six human cancer cell lines (A375, A431, A549, MCF‐7, MDA‐MB‐231, and U87MG). Blue‐light irradiation (λ=450 nm, 6.3 J cm?2) had little influence on the cytotoxicity of [ 3 ](PF6)2 after 6 h of incubation time, but it increased the cytotoxicity of the complex by a factor 2 after longer (24 h) incubation. Exploring the unexpected biological activity of [ 3 ](PF6)2 in the dark elucidated an as‐yet unknown bifaceted mode of action that depended on concentration, and thus, on the aggregation state of the compound. At low concentration, it acts as a monomer, inserts into the membrane, and can deliver [ 1 ]2+ inside the cell upon blue‐light activation. At higher concentrations (>3–5 μm ), complex [ 3 ](PF6)2 forms supramolecular aggregates that induce non‐apoptotic cell death by permeabilizing cell membranes and extracting lipids and membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号