首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(styrene) macromercaptanes (Mn = 1900, 3600, and 6100 g mol?1, PDI ≈ 1.2) derived from thiocarbonyl thio capped polymers prepared via reversible addition fragmentation chain transfer polymerization were employed to initiate the ring opening polymerization (ROP) of D ,L ‐lactide under conditions of organo‐catalyis employing 4,4‐dimethylaminopyridine. Poly(styrene)‐block‐poly(lactide) polymers of number average molecular weights up to 25,000 g mol?1 (PDI ≈ 1.2 to 1.6) were obtained and characterized via multiple detection size exclusion chromatography (SEC) using refractive index as well as UV detection. In addition, diffusion ordered nuclear magnetic resonance and liquid chromatography at critical conditions (of both polystyrene as well as poly(lactide) were employed to assess the copolymers' structure. Furthermore, it was demonstrated that polyethylenes capped with a thiol moiety can also be readily chain extended in a ROP employing D ,L ‐lactide, evidenced via NMR and high temperature SEC. This study indicates that the direct use of macromercaptantes is indeed a methodology to switch from a radical to a ROP process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Amphiphilic block copolymers were synthesized via a dual initiator chain transfer agent (inifer) that successfully initiated the ring opening polymerization (ROP) of l -lactide (LLA) and subsequently mediated the reversible addition-fragmentation chain transfer (RAFT) polymerization of poly(ethylene glycol) ethyl ether methacrylate (PEGEEMA). The formation of each polymer block was confirmed using 1H nuclear magnetic resonance spectroscopy, as well as gel permeation chromatography, and comprehensive kinetics studies provide valuable insights into the factors influencing the synthesis of well-defined block copolymers. The effect of monomer concentration, reaction time, and molar ratios of inifer to catalyst on the ROP of LLA are discussed, as well as the ability to produce poly(lactide) blocks of different molecular weights. The synthesis of hydrophilic PPEGEEMA blocks was also monitored via kinetics to provide a better understanding of the role the chain transfer agent plays in facilitating the complex and sterically demanding RAFT polymerization of PEGEEMA.  相似文献   

3.
Graft copolymers with cellulose diacetate (CDA) backbone and both the poly(ε‐caprolactone) and polystyrene, or poly(butyl acrylate) or PMMA grafts were prepared by two‐step process. First, ε‐caprolactone (CL) was polymerized by ring‐opening polymerization (ROP) initiated with CDA, partly funcionalized with 2‐bromo‐isobutyryl groups (degree of functionalization was 0.5). The p(CDA‐g‐CL) copolymers were used in the second step as polyfunctional macroinitiators of ATRP of the vinyl monomer, giving densely grafted copolymers with polyester and PSt, or PBuA, or PMMA grafts. The prepared copolymers were characterized by SEC, some of them also by FTIR spectroscopy and atomic force microscopy (AFM). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 564–573, 2008  相似文献   

4.
Functional polynorbornenes (PNBEs) containing pyrrolidine moiety and bis(trifluoromethyl)biphenyl side group were synthesized via ring‐opening metathesis polymerization (ROMP), and the microstructure of polymer chain was characterized by NMR spectroscopy. Poly(N‐3,5‐bis(trifluoromethyl)biphenyl‐norbornene‐pyrrolidine) (PTNP) and poly(N‐phenyl‐norbornene‐pyrrolidine) (PPNP) are supposed to have practically trans double bonds and adopt isotactic syn conformation, whereas poly(N‐3,5‐bis(trifluoromethyl)biphenyl‐norbornene‐dicarboximide) (PTNDI) has both trans and cis double bonds and atactic microstructure. PTNP, PTNDI, and PPNP have much different dielectric constants of 20, 7, and 3, respectively, which is attributed to both the polar 3,5‐bis(trifluoromethyl)biphenyl group and the stereoregular chain structure. The existence of rigid pyrrolidine moiety has a positive contribution to form the tactic polymer chain during ROMP. Polymers are highly thermal stable up to ~300 °C. Having good dielectric properties and thermal stability, these functional PNBEs are expected as the potential dielectric material in thin film capacitors. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
The ring‐opening polymerization of ε‐caprolactone (ε‐CL) and δ‐valerolactone (δ‐VL) using nine catalytic systems consisting of a combination of three C2v zirconocene complexes and three borate cocatalysts is discussed. The polymerizations proceed in a well‐controlled manner, producing polymers with relatively high molecular weights and narrow molecular weight distributions. Kinetic experiments of the polymerization of ε‐CL with the catalytic system Cp2ZrMe2/B(C6F5)3 (1) showed a linear dependence between polymerization yield and molecular weight with time, as well as between the molecular weight with the molar ratio of the monomer over the catalyst [ε‐CL]/[Zr], indicating sufficient control of the polymerization reaction. The catalytic system (1) was utilized for the synthesis of well‐defined block copolymers of MMA with ε‐CL and δ‐VL. All samples were characterized by size exclusion chromatography, nuclear magnetic resonance, and differential scanning calorimetry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3524–3537, 2007  相似文献   

6.
This study reports an application of trichloroethanol (TCE) as a bifunctional initiator for the synthesis of block copolymers (BCPs) by organocatalyzed ring‐opening polymerization (OROP) and atom transfer radical polymerization (ATRP). TCE was employed to synthesize a low dispersity poly (valerolactone) macroinitiator, which was subsequently used for the ATRP of tert‐butyl methacrylate. While it is known that TCE can serve as an initiator in ATRP, the ability to induce polymerization under OROP is reported for the first time. The formation of well‐defined BCPs was confirmed by gel permeation chromatography and 1H NMR. Computational studies were performed to obtain a molecular‐level understanding of the ring‐opening polymerization mechanism involving TCE as initiator. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 563–569  相似文献   

7.
The synthesis of polypeptide‐containing block copolymers combining N‐carboxyanhydride (NCA) ring‐opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was used. Well‐defined polypeptide macroinitiators were obtained from γ‐benzyl‐L ‐glutamate NCA, O‐benzyl‐serine NCA, and N‐benzyloxy‐L ‐lysine. Subsequent ATRP macroinitiation from the polypeptides resulted in higher than expected molecular weights. Analysis of the reaction products and model reactions confirmed that this is due to the high frequency of termination reactions by disproportionation in the initial phase of the ATRP, which is inherent in the amide initiator structure. In some cases selective precipitation could be applied to remove unreacted macroinitiator to yield well‐defined block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

8.
A 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO)‐terminated poly(ethylene glycol) (PEG) or ‐poly(ε‐caprolactone) (PCL) (PEG11‐TEMPO or PCL23‐TEMPO) is grafted as a side chain onto a ROMP‐generated polyoxanorbornene (PONB) main backbone with bromide pendant groups (PONB20‐Br) using the NRC click reaction to yield related the brush copolymers, PONB20g‐PEG11 or PONB20g‐PCL23 catalyzed by Cu(I), Cu(0), and N,N,N,N,N″‐pentamethyldiethylenetriamine in N,N‐dimethylformamide at room temperature. Additionally, a ROMP‐generated brush copolymer PONB9g‐poly(methyl methacrylate)24 (PMMA)24‐Cl was reacted with a PEG11‐TEMPO or a PCL23‐TEMPO precursor via the NRC click reaction to yield a corresponding brush terpolymer, PONB9g‐(PMMA24b‐PEG11) or PONB9g‐(PMMA24b‐PCL23) under a similar reaction condition described above. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
The utilization of poly(vinylchloride) (PVC) and poly(vinylidenefluoride) (PVDF) as macroinitiators for atom transfer radical polymerization (ATRP) of hydroxyethyl methacrylate (HEMA) was studied performing electroanalytical investigations and “grafting from” experiments to evaluate the potential modification of such commercial polymers by ATRP. The study was performed changing various operating parameters such as the nature of the copper salt, the ligand, the solvent, the temperature, and the reaction time. Electroanalytical data suggest that PVC can be easily activated by both CuCl/Tris(2‐pyridylmethyl)amine (TPMA) and CuCl/Tris[2‐(dimethylamino)ethyl]amine (Me6TREN), two catalytic systems widely adopted for ATRP reactions, in a wide range of operating conditions. PVDF is more difficult to be activated, due to the higher strength of the C? F bond. In particular, the utilization of high temperature and of a more reductant redox couple such as Cu(I)Me6TREN/Cu(II)Me6TREN was needed to achieve a significant degree of grafting. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2524–2536  相似文献   

10.
The inverse star block copolymer, (poly(ε‐caprolactone)‐b‐polystyrene)2core‐(poly(ε‐caprolactone)‐b‐polystyrene)2, [(PCL‐PS)2core‐(PCL‐PS)2] has been successfully prepared by combination of atom transfer radical polymerization (ATRP), ring opening polymerization (ROP), and “Click Chemistry.” The synthesis includes the following five steps: (1) synthesis of a heterofunctional initiator with two ATRP initiating groups and two hydroxyl groups; (2) formation of (Br‐PS)2core‐(OH)2 via ATRP of styrene; (3) preparation of the (PCL‐PS)2core‐(OH)2 through “click” reaction of the α‐propargyl, ω‐acetyl terminated PCL with (N3‐PS)2core‐(OH)2 which was prepared by transformation of the terminal bromine groups in (Br‐PS)2core‐(OH)2 into azide groups; (4) the ROP of CL using (PCL‐PS)2core‐(OH)2 as macroinitiator to form (PCL‐PS)2core‐(PCL‐OH)2; and (5) preparation of the (PCL‐PS)2core‐(PCL‐PS)2 through the ATRP of styrene using (PCL‐PS)2core‐(PCL‐Br)2 as macroinitiator which was prepared by reaction of the terminal hydroxyl groups at the end of the PCL chains with 2‐bromoisobutyryl bromide. The characterization data support structures of the inverse star block copolymer and the intermediates. The differential scanning calorimeter results and polarized optical microscope observation showed that the intricate structure of the inverse star block copolymer greatly restricted the movement of the PS segments and PCL segments, resulted in the increase of the glass transition temperature of PS segments and the decrease of crystallization ability of PCL segments. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7757–7772, 2008  相似文献   

11.
A series of superhydrophobic poly(methacryloxypropyltrimethoxysilane, MPTS‐b‐2,‐2,3,3,4,4,4‐heptafluorobutyl methacrylate, HFBMA)‐grafted silica hybrid nanoparticles (SiO2/PMPTS‐b‐PHFBMA) were prepared by two‐step surface‐initiated atom transfer radical polymerization (SI‐ATRP). Under the adopted polymerization conditions in our previous work, the superhydrophobic property was found to depend on the SI‐ATRP conditions of HFBMA. As a series of work, in this present study, the effects of polymerization conditions, such as the initiator concentration, the molar ratio of monomer and initiator, and the polymerization temperature on the SI‐ATRP kinetics and the interrelation between the kinetics and the surface properties of the nanoparticles were investigated. The results showed that the SI‐ATRP of HFBMA was well controlled. The results also showed that both the surface microphase separation and roughness of the hybrid nanoparticles could be strengthened with the increase of the molecular weight of polymer‐grafted silica hybrid nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
A novel initiator containing pyrene, a fluorescent moiety, was prepared by reacting 1-aminopyrene and 2-bromoisobutyl bromide. The structure elucidation of the new initiator was carried out using various spectroscopic tools, as well as through single crystal X-ray diffraction studies. Novel, fluorescent amphiphilic block copolymers with a pyrene end-group, poly(styrene-b-acrylic acid) [P(S-b-AA)], poly(methyl methacrylate-b-dimethylaminoethyl methacrylate) [P(MMA-b-DMAEMA)], poly(styrene-b-tert-butyl acrylate) [P(S-b?t-BA)], poly(styrene-b-dimethylaminoethyl methacrylate) [P(S-b-DMAEMA)] were successfully synthesized by the atom transfer radical polymerization (ATRP) method, using CuBr as the catalyst and N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)/N,N,N′,N″,N″-hexamethyltriethylenetetramine (HMTETA) as the complexing agent. The polymers were characterized by GPC, 1H-NMR, IR and UV-Vis spectroscopies. It was observed that as the polymerization time increased, both the conversion and the molecular weight increased linearly with time. The fluorescence properties of the polymers prepared were recorded. The physical properties and especially the pH dependent swelling properties of the amphiphilic block copolymers have been investigated. The utility of the block copolymers in the formation of stable dispersion of cadmium sulphide nanoparticles was investigated as a model study.  相似文献   

13.
A series of well‐defined centipede‐like copolymers with poly(glycidyl methacrylate) (PGMA) as main chain and poly(L ‐lactide) (PLLA) and polystyrene (PSt) as side chains have been synthesized successfully by combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). The synthetic process includes three steps. (1) Synthesis of PGMA via ATRP; (2) preparation of macroinitiator with one bromine group and a hydroxyl group at every GMA unit of PGMA; (3) ring‐opening polymerization of LLA and ATRP of St to obtain the asymmetric centipede‐like copolymers. The number–average degrees of polymerization of PGMA backbone, PLLA and PSt side chains were determined by 1H‐NMR spectra, and the molecular weights of the resultant intermediates and centipede‐like copolymers were measured by gel permeation chromatography. The molecular weight distributions were narrow and the molecular weights of both the backbone and the side chains were controllable. The thermal behavior of the centipede‐like copolymers was investigated by differential scanning calorimeter. With the increase of PSt side chain length, the glass transition temperature of PLLA side chains shifted to high temperature, and crystallization ability of PLLA side chains became poor. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5580–5591, 2008  相似文献   

14.
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007  相似文献   

15.
We successfully synthesized poly(l ‐lactide)‐b‐poly (methyl methacrylate) diblock copolymers at ambient temperature by combining ultraviolet light‐induced copper‐catalyzed ATRP and organo‐catalyzed ring‐opening polymerization (ROP) in one‐pot. The polymerization processes were carried out by three routes: one‐pot simultaneous ATRP and ROP, one‐pot sequential ATRP followed by ROP, and one‐pot sequential ROP followed by ATRP. The structure of the block copolymers is confirmed by nuclear magnetic resonance and gel permeation chromatography, which suggests that the polymerization method is facile and attractive for preparing block copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 699–704  相似文献   

16.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

17.
Titanium(IV) chloride and silyl reagents mediated regio- and chemoselective ring opening reactions of oxa-bridged piperidinone ring systems were demonstrated. This methodology interestingly undergoes the stereoselective ring opening at the C-O bond of oxa-bridged piperidinone ring systems. Study of TiCl4 with hydride or non-hydride silyl reagents furnished the product with selectivity. This protocol is highly valuable to synthesize a range of stereoselective piperidinones, quinolinones ring systems.  相似文献   

18.
Cyclic oligomers of poly(1,4‐cyclohexylenedimethylene terephthalate) (PCT) were prepared by reaction of 1,4‐cyclohexanedimethanol (CHDM) with terephthaloyl chloride under diluted conditions and separated from the linear products by silica gel column at a yield of 23.7 wt %. Cyclic dimer, trimer, tetramer, pentamer, and hexamer were further separated by high performance liquid chromatography, and found to constitute 98% of the cyclics mixtures. The structures of PCT cyclics were confirmed by means of mass spectrometry, Fourier transform infrared, and 1H NMR analysis. A series of experiments were carried out to study the effects of catalysts and cis/trans configuration of isomers of CHDM on the yield of cyclic oligomers. Ring opening polymerization of the cyclic oligomers was carried out by heating the sample mixtures at 310 °C for 30 min in the presence of antimony oxide. Polymerization was confirmed by inherent viscosity changes and infrared spectra of the resulting polyesters. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1828–1833, 2000  相似文献   

19.
Solubilization of the hydrophobic Hoveyda‐Grubbs' catalyst in micellar aqueous phase has been achieved using dodecyl and cetyl ammonium chloride as surfactants. The domain of solubilization has been estimated before carrying out ring‐opening metathesis polymerization in these micellar solutions with a hydrophilic monomer. Kinetics orders have been determined relative to monomer, initiator, and surfactant. A good control of the molecular weight has been obtained for ratios [micelles]/[initiator] over 1. The better control of the polymerization obtained in micellar solution has been explained by a difference of reactivity leading to a more efficient initiation step in the presence of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2833–2844, 2008  相似文献   

20.
One‐step synthesis of block‐graft copolymers by reversible addition‐fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel initiator was reported. Block‐graft copolymers were synthesized in one‐step by simultaneous RAFT polymerization of n‐butylmethacrylate (nBMA) and ROP of ε‐caprolacton (CL) in the presence of a novel macroinitiator (RAFT‐ROP agent). For this purpose, first epichlorohydrin (EPCH) was polymerized by using H2SO4 via cationic ring‐opening mechanism. And then a novel RAFT‐ROP agent was synthesized by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin (poly‐EPCH). By using the RAFT‐ROP agent, poly[CL‐b‐EPCH‐b‐CL‐(g‐nBMA)] block‐graft copolymers were synthesized. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The block lengths of the block‐graft copolymers were calculated by using 1H‐nuclear magnetic resonance (1H NMR) spectrum. The block length could be adjusted by varying the monomer and initiator concentrations. The characterization of the products was achieved using 1H NMR, Fourier‐transform infrared spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, elemental analysis, and fractional precipitation (γ) techniques. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2651–2659  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号