首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, six coumarins, including two new ones, 8-(3-hydroxy-2,2-dimethylpropyl)-7-methoxy-2H-chromen-2-one (2) and 5-[(7′,8′-dihydroxy-3′,8′-dimethyl-2-nonadienyl)oxy] psoralen (4), as well as four known ones, 5-[(6′,7′-dihydroxy-3′,7′-dimethyl-2-octenyl) oxy] psoralen (1), marmin (3), epoxybergamottin (5), and aurapten (6) were successfully separated from the crude extract of pummelo (Citrus maxima (Burm.) Merr. Cv. Shatian Yu) peel by high-speed countercurrent chromatography in a single run with petroleum-ether–ethyl acetate–methanol–water (4:6:6:4, v/v). The structures of these six coumarins were elucidated by ESI-MS, extensive 1D and 2D NMR spectroscopy.  相似文献   

2.
Five New unusual monoterpene-substituted dihydrochalcones, the adunctins A–E (1″S)-1-{2′-hydroxy-4′-methoxy-6′-[4″-methyl-1″-(1?-methylethyl)cyclohex-3″ -en-1″ -yloxy]phenyl}-3-phenylpropan-1-one ( 1 ), (5aR*,8R*,9aR*)-3-phenyl-1-[5′,8′,9′,9′a-tetrahydro-3′-hydroxy-1′-methoxy-8′-(1″-methylethyl)-5′-a-methyldibenzo-[b,d]furan-4′-yl]propan-1-one ( 2 ), (2′R*,4″S*)-1-{6′-hydroxy-4′-methoxy-4″-(1?-methylethyl)spiro[benzo[b]-furan-2′(3′H),1″ -cyclohex-2″ -en]-7′-yl}-3-phenylpropan-1-one ( 3 ), (2′R*,4″R*)-1-{6′-hydroxy-4′-methylethyl-4″-(1?-methylethyl)spiro[benzo[b]furan-2′(3′H),1″-cyclohex-2″-en]-7′-yl}-3-phenypropan-1-one ( 4 ), and (5′aR*,6′S*, 9′R*,9′aS*)-1-[5′a,6′,7′,8′,9′a-hexahydro-3′,6′-methoxy-6′-methyl-9′-(1″-methylethyl)dibenzo[b,d]-furan-4′-yl]-3-phenylpropan-1-one ( 5 ) were isolated from the leaves of Piper aduncum (Piperaceae) by preparative liquid chromatography. In addition, (?)-methyllindaretin ( 6 ), trans-phytol, and α-tocopherol ( = vitamin E) were also isolated and identified. The structures were elucidated by spectroscopic methods, including 1D- and 2D-NMR spectroscopy as well as single-crystal X-ray diffraction analysis. The antibacterial and cytotoxic potentials of the isolates were also investigated.  相似文献   

3.
Synthesis of Alkylphenols and -catechols from Plectranthus albidus (Labiatae) In the preceding paper, we described the isolation and structure elucidation of a series of even-numbered phenol- or pyrocatechol-derived 1-arylalkane-5-ones. To establish the assigned structures unambiguously and to have larger quantities available for physiological testing, the following compounds were prepared: in the alkylphenol series, 1-(4′-hydroxyphenyl)tetradecan-5-one ( 2a ), 1-(4′-hydroxyphenyl)hexadecan-5-one ( 2b ), and 1-(4′-hydroxyphenyl)octadecan-5-one ( 2c ); in the alkylcatechol series, 1-(3′,4′-dihydroxyphenyl)decan-5-one ( 3a ; not isolated as a natural compound), 1-(3′,4′-dihydroxyphenyl)dodecan-5-one ( 3b ), 1-(3′,4′-dihydroxyphenyl)tetradecan-5-one ( 3c ), 1-(3′,4′-dihydroxyphenyl)hexadecan-5-one ( 3d ), 1-(3′,4′-dihydroxyphenyl)octadecan-5-one ( 3e ), and 1-(3′,4′-dihydroxyphenyl)icosan-5-one ( 3f ); in the alkenylphenol series, (Z)-1-(4′-hydroxyphenyl)octadec-13-en-5-one ( 4a ) and (E)-1-(4′-hydroxyphenyl)octadec-13-en-5-one ( 4b ); in the alkenylcatechol series, (E,E)-1-(3′,4′-dihydroxyphenyl)deca-1,3-dien-5-one ( 1 ) and (Z)-1-(3′,4′-dihydroxyphenyl)octadec-13-en-5-one ( 5 ). All compounds proved to be identical with the previously assigned structures. Compound 1 was synthesized by regioselective aldol condensation of heptan-2-one with (E)-1-(3′,4′-dimethoxyphenyl)prop-2-enal ( 6d ; Scheme 1), the phenols 2a–c and the catechols 3a–f by addition of the corresponding alkyl Grignard reagent to 5-(4′-methoxyphenyl)- or 5-(3′,4′-dimethoxyphenyl)pentanal ( 17c and 18c , resp.; Scheme 4), and the olefins 4a, 4b and 5 from 17c or 18c via the 9-O-silyl-protected 13-(4′-methoxyphenyl)- or 13-(3′,4′-dimethoxyphenyl)tridecanals ( 26 and 27 , resp.) and Wittig olefination as the key steps (Scheme 5).  相似文献   

4.
In the present study, two new xanthones, (5′S,8′S)-1,3,5,8-tetrahydroxyxanthone(7→2′)-1,3,5,8-tetrahydroxy-5′,6′,7′,8′-tetrahydroxanthone (1), 5-hydroxy-3,4,6-trimethoxyxanthone-1-O-β-D-glucopyranoside (2), and eight known xanthones (3–10) were isolated from the whole plants of Gentianella acuta. Their structures were identified by the spectroscopic analyses (HR-ESI-MS, and 1D and 2D NMR). Meanwhile, cell-protective effects against H2O2-induced H9c2 cardiomyocyte injury and cytotoxic activities of compounds 1–10 were also determined.  相似文献   

5.
Abstract

Phytochemical study on the extract of Vietnamese medicinal plant Helicteres hirsuta Lour. has led to the isolation and structural elucidation of twelve secondary metabolites, 3-O-trans-caffeoylbetulinic acid (1), 3β-benzoylbetulinic acid (2), betulinic acid methyl ester (3), betulinic acid (4), lupeol (5), 4-hydroxybenzoic acid (6), 3,4-dihydroxybenzoic acid methyl ester (7), 4-hydroxy-3,5-dimethoxybenzoic acid (8), 5,8-dihydroxy-7,4′-dimethoxyflavone (9), isoscutellarein 4’-methyl ether 8-O-β-D-glucopyranoside (10), methyl caffeate (11) and stigmasterol (12). Especially, compound 2 was reported as a new natural product. Their structures were elucidated by a combination of 2D NMR and ESI-FT-ICR-MS spectroscopies. Furthermore, eight compounds were tested for their cytotoxicity against five cancer cell lines (Hela, HepG2, SK-LU-1, AGS and SK-MEL-2). The results showed that compounds (1, 3-5, 9) have moderate activities. This is the first study on the chemical constituents and their cytotoxicity of the Vietnamese Helicteres hirsuta L.  相似文献   

6.
The extract of Casimiroa edulis was investigated for antihypertensive activity. The ethanol and total alkaloids (in chloroform) extracts were found to have antihypertensive properties at doses of 500 and 200 mg/kg, respectively. Four quinolinone alkaloids were isolated and identified as: 2-(2′-hydroxy-4′-methoxyphenyl)-5,8-dimethoxy-3-propyl-1H-quinolin-4-one (1), 5,8-dimethoxy-2-(3′-methoxyphenyl)-3-propyl-1H-quinolin-4-one (2), 5,8-dimethoxy-2-(3′,4′-dimethoxyphenyl)-3-propyl-1H-quinolin-4-one (3), and 5,6-dimethoxy-2-(2′,5′,6′-trimethoxyphenyl)-1H-quinolin-4-one (4). Interestingly, compounds 1, 2, and 3 were found to be new alkaloids. The four isolated alkaloids showed antihypertensive activity at doses of 50, 100, 200, and 300 mg/kg, respectively. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 473–476, September–October, 2007.  相似文献   

7.
Isolation and characterisation of compounds, 1-(2′-hydroxy-4′-methoxyphenyl)-3-(4″-methoxyphenyl)-2-hydroxypropane-1,3-dione (1), 5-hydroxyflavone (2), 3,5,7,3′,4′-pentahydroxyflavone (3), 3,5,7,2′,4′-pentahydroxyflavone (4) and 5,7,3′,4′-tetrahydroxyflavone-3-O-rhamnoside (5) are reported from the air dried flowering buds of Bauhinia tomentosa Linn. Their structures are determined on the basis of extensive chemical and spectral evidences. Compound (1) is reported for the first time from the plant source. While compounds (2) and (4) are reported for the first time from this genus, compound (2) is reported for the second time from the natural source.  相似文献   

8.
4,5-Diaryl-2,3-dihydro-2-mercaptoimidazoles (2a–e) were synthesized. They reacted with chloroacetic acid in gl. acetic acid/Ac 2 O in presence of anhyd. sodium acetate afforded 5,6-diaryl-2,3-dihydro-imidazo[2,1-b]thiazol-3-ones (3a–d). Also these compounds were prepared by the action of chloroacetyl chloride on compounds (2) in pyridine. Compounds (3a–d) on condensation with aromatic aldehydes yield 2-arylmethylene-5,6-diaryl-2,3-dihydroimidazo[2,1-b]-thiazol-3-ones (4a–q). The latter compounds were prepared directly by the reaction of (2) with chloroacetic acid and the aromatic aldehydes. Compounds (3a–d) coupled with aryldiazonium salts in pyridine to give 2-arylhydrazono-5,6-diaryl-2,3-dihydroimidazo[2,1-b]thiazol-3-ones (5a–r). Also compounds (2) when reacted with 2 or 3-bromopropionic acid afford 2,3-di-hydro-5,6-diaryl-2-methylimidazo[2,1-b]thiazol-3-ones (6a–d) and 2,3-di-hydro-6,7-diaryl imidazo-[2,1-b]-1,3-thiazin-4-ones (7a–d), respectively. Compounds (3, 6, and 7) have been cleaved by aromatic amines to give the corresponding 2-(4′,5′-diaryl-2′,3′-dihydroimidazol-2′-yl)thioacetanilide (8a–f), 2-(2′,3′-dihydro-4′,5′-diaryl imidazol-2′-yl)thiopropionamide (9a–c), and 3-(2′,3′-dihydro-4′,5′-diaryl-imidazol-2′-yl)thiopropionamide (10a–d) respectively. All the prepared compounds show considerable antimicrobial activity against bacteria, yeast, and fungi.  相似文献   

9.
A new 9,10-dihydrophenanthrene,1,5-dihydroxy-3,4,7-trimethoxy-9,10-dihydrophenanthrene (1) was isolated and identified from the whole plants of Dendrobium moniliforme, as well as 24 known compounds including hircinol (2), (2R*,3S*)-3-hydroxymethyl-9-methoxy-2-(4′-hydroxy-3′,5′-dimethoxyphenyl)-2,3,6,7-tetrahydro-phenanthro[4,3-b]furan-5,11-diol (3), diospyrosin (4), aloifol I (5), moscatilin (6), 3,4′-dihydroxy-3′,4,5-trimethoxybibenzyl (7), gigantol (8), 3,3′-dihydroxy-4,5-dimethoxybibenzyl (9), longicornuol A (10), N-trans-cinnamoyltyramine (11), paprazine (12), N-trans-feruloyl 3′-O-methyldopamine (13), moupinamide (14), dihydroconiferyl dihydro-p-coumarate (15), dihydrosinapyl dihydro-p-coumarate (16), 3-isopropyl-5-acetoxycyclohexene-2-one-1 (17), p-hydroxybenzaldehyde (18), vanillin (19), p-hydroxyphenylpropionic acid (20), vanillic acid (21), protocatechuic acid (22), (+)-syringaresinol (23), β-sitosterol (24) and daucosterol (25). Compounds 3, 4, 13, 16, 17 and 20 were isolated from the Dendrobium genus for the first time, and compounds 2, 5, 7, 912, 14, 15, 18, 21 and 22 were originally obtained from D. moniliforme.  相似文献   

10.
Five new benzopyran derivatives (26) and a new natural product (1) were isolated from endophytic Daldinia eschscholzii in Dendrobium chrysotoxum and determined as (R)-2,3-dihydro-2,5-dihydroxy-2-methylchromen-4-one (1), (2R, 4S)-2,3-dihydro-2-methyl-benzopyran-4,5-diol (2), (R)-3-methoxyl-1-(2,6-dihydroxy phenyl)-butan-1-one (3), 7-O-α-d-ribosyl-5-hydroxy-2-methyl-4H-chromen-4-one (4), 7-O-α-d-ribosyl-2,3-dihydro-5-hydroxy-2-methyl-chromen-4-one (5), daldinium A (6). These compounds were evaluated for their antimicrobial activity, anti-acetylcholinesterase, nitric oxide inhibition, anticoagulant, photodynamic antimicrobial activities and glucose uptake of adipocytes. Some compounds showed photoactive antimicrobial activities and glucose uptake stimulating activities.  相似文献   

11.
Two new linear acetogenins, gracilipin A (1) and methylsaccopetrin A (2) along with seven known compounds, saccopetrin A (3), 7,3′,4′-trimethylquercetin (4), rhamnazin (5), casticin (6), isokanugin (7), melisimplexin (8) and 5-hydroxy-3,7-dimethoxy-3′,4′-methylenedioxyflavone (9) were isolated from the fruits of Goniothalamus gracilipes Bân. Their structures were established by spectral analysis, such as mass spectrometry, 1D-NMR, 2D-NMR and circular dichroism (CD). Compounds 1 and 3 showed cytotoxic activity against KB cell line with IC50 values of 14.6 and 15.3 μM, respectively.  相似文献   

12.
《合成通讯》2013,43(20):3175-3181
1, 3 - Disubstituted- 4 - (1′, 3′- dithiolane /dithiane - 2′- ylidene) - 2 -pyrazolin-5-one derivatives like (1ac), (2ac), (3ac) have been obtained by condensation of 2-pyrazolin-5-ones (1), (2) and (3) with carbon disulfide in presence of triethylamine followed by the reaction with 1,2-dibromoethane (4a), 1,3-dibromopropane (4b) and 1,3-dibromobutane (4c) respectively.  相似文献   

13.
Two new xanthones, designated garcimangosxanthone F (1) and garcimangosxanthone G (2), were isolated from the EtOAc-soluble fraction of ethanolic extract from the pericarp of Garcinia mangostana. Their structures were established as 1,6,7-trihydroxy-5-(3-methylbut-2-enyl)-8-(3-hydroxy-3-methylbutyl)-6′,6′-dimethylpyrano[2′,3′:3,2]xanthone and 1,6,7-trihydroxy-5-(3-methylbut-2-enyl)-8-(3-hydroxy-3-methylbutyl)-6′,6′-dimethyl-4′,5′-dihydropyrano[2′,3′:3,2]xanthone, respectively, on the basis of their 1D, 2D NMR and MS data interpretation.  相似文献   

14.
The structures of the main carotenoid pigments from the mutant 1-207 of Rhizobium lupini were elucidated by spectroscopic techniques (UV./VIS., CD., 270 MHz 1H-NMR., and MS.). Ten carotenoids were identified, namely β,β-carotene ( 1 ), β,β-caroten-4-one (echinenone, 2 ), β,β-carotene-4,4′-dione (canthaxanthin, 3 ), (3S)-3-hydroxy-β,β-caroten-4-one ((3S)-3-hydroxyechinenone, 4 ), (2R, 3R)-β,β-carotene-2,3-diol ( 5 ), (3S)-3-hydroxy-β,β-carotene-4,4′-dione ((3S)-adonirubin, 6 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4-one ( 7 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4,4′-dione ( 8 ), (2R, 3S, 2′R, 3′R)-2,3,2′,3′-tetrahydroxy-β,β-caroten-4-one ( 9 ) and the corresponding (2R, 3S, 2′R, 3′S)-4,4′-dione ( 10 ). Structures 5, 7, 8 and 10 have not been reported before. From the observed carotenoid pattern it is concluded that in this mutant the oxidation to 4-oxo compounds is favoured compared to the hydroxylation at C(3) and C(2).  相似文献   

15.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

16.
A new xanthone derivative, 3,5,8-trihydroxy-2,2-dimethyl-3,4,4-trihydro-2H,6H-pyrano[3,2-b]-xanthen-6one (1), together with three known compounds, 5,8-dihydroxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen6-one (2), cyclo-(N-O-methyl-L-Trp-L-Ile-D-Pip-L-2-amino-8-oxo-decanoyl) (3), and cyclo-(Phe-Tyr) (4), was isolated from the mangrove endophytic fungus No. ZSU-H16 obtained from the South China Sea coast. Their structures were elucidated by spectroscopic methods, mainly 1D and 2D NMR spectroscopic techniques. Compound 1 exhibited cytotoxicity against KB and KBV 200 cells with IC50 values greater than 50 μg/mL, respectively.  相似文献   

17.
Abstract

The Zemplén degradation of 2, 3, 5, 6, 2′, 3′, 4′, 6′-octa-O-benzoylcellobiononitrile (1), -lactobiononitrile (2), and -maltobiononitrile (3) was carried out giving a mixture of the four 3-O-(D-hexopyranosyl)-D-arabinoses. Their reduction gave the 3-O-(D-hexopyranosyl)-D-arabinitols, and their benzoylation gave the 1, 2, 4, 5, 2′, 3′, 4′, 6′-octa-O-benzoyl-(D-hexopyranosyl)-D-arabinitols. Their 1H and 13C NMR spectra are described, and their conformations are determined to be planar zig-zag for the acyclic moieties.  相似文献   

18.
Isolation and Structure of Long-Chain Alkylphenols and -catechols from Plectranthus albidus (Labiatae) From the title plant, a series of even-numbered long-chain, phenol- or pyrocatechol-derived 1-arylalkan-5-ones was isolated by classical chromatography and preparative reversed phase HPLC. By chemical and spectroscopic methods, including coupled chromatographic techniques (GC/MS/FT-IR, HPLC/MS), their structures were established to be 1-(4′-hydroxyphenyl)tetradecan-5-one ( 2a ), 1-(4′-hydroxyphenyl)hexadecan-5-one ( 2b ), 1-(4′-hydroxyphenyl)octadecan-5-one ( 2c ), and (Z)-1-(4′-hydroxyphenyl)octadec-13-en-5-one ( 2d ); (E,E)-1-(3′,4′-dihydroxyphenyl)deca-1,3-dien-5-one ( 1a ), 1-(3′,4′-dihydroxyphenyl)dodecan-5-one ( 3a ), 1-(3′,4′-dihydroxyphenyl)-tetradecan-5-one ( 3b ), 1-(3′,4′-dihydroxyphenyl)hexadecan-5-one ( 3c ), 1-(3′,4′-dihydroxyphenyl)octadecan-5-one ( 3d ), 1-(3′,4′-dihydroxyphenyl)icosan-5-one ( 3e ), and (Z)-1-(3′,4′-dihydroxyphenyl)octadec-13-en-5-one ( 3f ). In vitro, the compounds show significant antioxidant activity, the inhibitory concentration of the most potent one, 1a , being slightly lower than for 2-(tert-butyl)-4-methoxyphenol (BHA) and 2,6-di(tert-butyl)-4-methylphenol (BHT) in the Fe2+-catalysed autooxidation of linoleic acid, whereas the acitivities of phenols 2a–d are in the same order of magnitude as α-tocopherol.  相似文献   

19.
A phytochemical investigation of the whole plant of Crassocephalum bauchiense Huch. resulted in the isolation of a new clerodane diterpenoid, ent-2β,18,19-trihydroxycleroda-3,13-dien-16,15-olide (1), together with two known flavonoids 3′,5-dihydroxy-4′,5′,6,7,8-pentamethoxyflavone (2) and 4′,5-dihydroxy-3′,5′,6,7,8-pentamethoxyflavone (3). The compounds were tested against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum. Compound 2 showed weak activity (IC50 = 10.1 g/mL) whilst compounds 1 and 3 were inactive. The structures of the compounds were elucidated by using detailed spectral analyses, especially 1H and 13C NMR, 1H–1H COSY, NOESY, HMBC and HR-ESI-MS.  相似文献   

20.
Polypyridyl ruthenium(II) complexes [RuII(3-bptpy)(dmphen)Cl]ClO4 (1), [RuII(3-cptpy)(dmphen)Cl]ClO4 (2), [RuII(2-tptpy)(dmphen)Cl]ClO4 (3), and [RuII(9-atpy)(dmphen)Cl]ClO4 (4) {where 3-bptpy?=?4′-(3-bromophenyl)-2,2′:6′,2″-terpyridine, 3-cptpy?=?4′-(3-chlorophenyl)-2,2′:6′,2″-terpyridine, 2-tptpy?=?4′-(2-thiophenyl)-2,2′:6′,2″-terpyridine, 9-atpy?=?4′-(9-anthryl)-2,2′:6′,2″-terpyridine, dmphen?=?2,9-dimethyl-1,10-phenanthroline} have been synthesized and characterized. The DNA-binding properties of the complexes with Herring Sperm DNA have been investigated by absorption titration and viscosity measurements. The ability of complexes to break the pUC19 DNA has been checked by gel electrophoresis. The experimental results suggest that all the complexes bind DNA via partial intercalation. The results also show that the order of DNA-binding affinities of the complexes is 4?<?3?<?2?<?1, confirming that planarity of the ligand in a complex is very important for DNA-binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号