首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Process monitoring and control requires the detection of structural changes in a data stream in real time. This article introduces an efficient sequential Monte Carlo algorithm designed for learning unknown changepoints in continuous time. The method is intuitively simple: new changepoints for the latest window of data are proposed by conditioning only on data observed since the most recent estimated changepoint, as these observations carry most of the information about the current state of the process. The proposed method shows improved performance over the current state of the art. Another advantage of the proposed algorithm is that it can be made adaptive, varying the number of particles according to the apparent local complexity of the target changepoint probability distribution. This saves valuable computing time when changes in the changepoint distribution are negligible, and enables rebalancing of the importance weights of existing particles when a significant change in the target distribution is encountered. The plain and adaptive versions of the method are illustrated using the canonical continuous time changepoint problem of inferring the intensity of an inhomogeneous Poisson process, although the method is generally applicable to any changepoint problem. Performance is demonstrated using both conjugate and nonconjugate Bayesian models for the intensity. Appendices to the article are available online, illustrating the method on other models and applications.  相似文献   

2.
Although various efficient and sophisticated Markov chain Monte Carlo sampling methods have been developed during the last decade, the sample mean is still a dominant in computing Bayesian posterior quantities. The sample mean is simple, but may not be efficient. The weighted sample mean is a natural generalization of the sample mean. In this paper, a new weighted sample mean is proposed by partitioning the support of posterior distribution, so that the same weight is assigned to observations that belong to the same subset in the partition. A novel application of this new weighted sample mean in computing ratios of normalizing constants and necessary theory are provided. Illustrative examples are given to demonstrate the methodology.  相似文献   

3.
We develop new methodology for estimation of general class of term structure models based on a Monte Carlo filtering approach. We utilize the generalized state space model which can be naturally applied to the estimation of the term structure models based on the Markov state processes. It is also possible to introduce measurement errors in the general way without any bias. Moreover, the Monte Carlo filter can be applied even to the models in which the zero-coupon bonds' prices can not be analytically obtained. As an example, we apply the method to LIBORs (London Inter Bank Offered Rates) and interest rates swaps in the Japanese market and show the usefulness of our approach.  相似文献   

4.
This article addresses finite sample stability properties of sequential Monte Carlo methods for approximating sequences of probability distributions. The results presented herein are applicable in the scenario where the start and end distributions in the sequence are fixed and the number of intermediate steps is a parameter of the algorithm. Under assumptions which hold on noncompact spaces, it is shown that the effect of the initial distribution decays exponentially fast in the number of intermediate steps and the corresponding stochastic error is stable in 𝕃 p norm.  相似文献   

5.
A current challenge for many Bayesian analyses is determining when to terminate high-dimensional Markov chain Monte Carlo simulations. To this end, we propose using an automated sequential stopping procedure that terminates the simulation when the computational uncertainty is small relative to the posterior uncertainty. Further, we show this stopping rule is equivalent to stopping when the effective sample size is sufficiently large. Such a stopping rule has previously been shown to work well in settings with posteriors of moderate dimension. In this article, we illustrate its utility in high-dimensional simulations while overcoming some current computational issues. As examples, we consider two complex Bayesian analyses on spatially and temporally correlated datasets. The first involves a dynamic space-time model on weather station data and the second a spatial variable selection model on fMRI brain imaging data. Our results show the sequential stopping rule is easy to implement, provides uncertainty estimates, and performs well in high-dimensional settings. Supplementary materials for this article are available online.  相似文献   

6.
Researchers and analysts are increasingly using mixed logit models for estimating responses to forecast demand and to determine the factors that affect individual choices. However the numerical cost associated to their evaluation can be prohibitive, the inherent probability choices being represented by multidimensional integrals. This cost remains high even if Monte Carlo or quasi-Monte Carlo techniques are used to estimate those integrals. This paper describes a new algorithm that uses Monte Carlo approximations in the context of modern trust-region techniques, but also exploits accuracy and bias estimators to considerably increase its computational efficiency. Numerical experiments underline the importance of the choice of an appropriate optimisation technique and indicate that the proposed algorithm allows substantial gains in time while delivering more information to the practitioner. Fabian Bastin: Research Fellow of the National Fund for Scientific Research (FNRS)  相似文献   

7.
This paper extends some adaptive schemes that have been developed for the Random Walk Metropolis algorithm to more general versions of the Metropolis-Hastings (MH) algorithm, particularly to the Metropolis Adjusted Langevin algorithm of Roberts and Tweedie (1996). Our simulations show that the adaptation drastically improves the performance of such MH algorithms. We study the convergence of the algorithm. Our proves are based on a new approach to the analysis of stochastic approximation algorithms based on mixingales theory.   相似文献   

8.
Sampling from complex distributions is an important but challenging topic in scientific and statistical computation. We synthesize three ideas, tempering, resampling, and Markov moving, and propose a general framework of resampling Markov chain Monte Carlo (MCMC). This framework not only accommodates various existing algorithms, including resample-move, importance resampling MCMC, and equi-energy sampling, but also leads to a generalized resample-move algorithm. We provide some basic analysis of these algorithms within the general framework, and present three simulation studies to compare these algorithms together with parallel tempering in the difficult situation where new modes emerge in the tails of previous tempering distributions. Our analysis and empirical results suggest that generalized resample-move tends to perform the best among all the algorithms studied when the Markov kernels lead to fast mixing or even locally so toward restricted distributions, whereas parallel tempering tends to perform the best when the Markov kernels lead to slow mixing, without even converging fast to restricted distributions. Moreover, importance resampling MCMC and equi-energy sampling perform similarly to each other, often worse than independence Metropolis resampling MCMC. Therefore, different algorithms seem to have advantages in different settings.  相似文献   

9.
Abstract

In this article we discuss the problem of assessing the performance of Markov chain Monte Carlo (MCMC) algorithms on the basis of simulation output. In essence, we extend the original ideas of Gelman and Rubin and, more recently, Brooks and Gelman, to problems where we are able to split the variation inherent within the MCMC simulation output into two distinct groups. We show how such a diagnostic may be useful in assessing the performance of MCMC samplers addressing model choice problems, such as the reversible jump MCMC algorithm. In the model choice context, we show how the reversible jump MCMC simulation output for parameters that retain a coherent interpretation throughout the simulation, can be used to assess convergence. By considering various decompositions of the sampling variance of this parameter, we can assess the performance of our MCMC sampler in terms of its mixing properties both within and between models and we illustrate our approach in both the graphical Gaussian models and normal mixtures context. Finally, we provide an example of the application of our diagnostic to the assessment of the influence of different starting values on MCMC simulation output, thereby illustrating the wider utility of our method beyond the Bayesian model choice and reversible jump MCMC context.  相似文献   

10.
Recently, a Bayesian receiver for blind detection in fading channels has been proposed by Chen, Wang and Liu (200,IEEE Trans. Inform. Theory,46, 2079–2094), based on the sequential Monte Carlo methodology. That work is built on a parametric modelling of the fading process in the form of a state-space model, and assumes the knowledge of the second-order statistics of the fading channel. In this paper, we develop a nonparametric approach to the problem of blind detection in fading channels, without assuming any knowledge of the channel statistics. The basic idea is to decompose the fading process using a wavelet basis, and to use the sequential Monte Carlo technique to track both the wavelet coefficients and the transmitted symbols. Moreover, the algorithm is adaptive to time varying speed/smoothness in the fading process and the uncertainty on the number of wavelet coefficients (shrinkage order) needed. Simulation results are provided to demonstrate the excellent performance of the proposed blind adaptive receivers. This work was supported in part by the U.S. National Science Foundation (NSF) under grants CCR-9875314, CCR-9980599, DMS-9982846, DMS-0073651 and DMS-0073601.  相似文献   

11.
Abstract

The “leapfrog” hybrid Monte Carlo algorithm is a simple and effective MCMC method for fitting Bayesian generalized linear models with canonical link. The algorithm leads to large trajectories over the posterior and a rapidly mixing Markov chain, having superior performance over conventional methods in difficult problems like logistic regression with quasicomplete separation. This method offers a very attractive solution to this common problem, providing a method for identifying datasets that are quasicomplete separated, and for identifying the covariates that are at the root of the problem. The method is also quite successful in fitting generalized linear models in which the link function is extended to include a feedforward neural network. With a large number of hidden units, however, or when the dataset becomes large, the computations required in calculating the gradient in each trajectory can become very demanding. In this case, it is best to mix the algorithm with multivariate random walk Metropolis—Hastings. However, this entails very little additional programming work.  相似文献   

12.
Maximum a Posteriori Sequence Estimation Using Monte Carlo Particle Filters   总被引:1,自引:0,他引:1  
We develop methods for performing maximum a posteriori (MAP) sequence estimation in non-linear non-Gaussian dynamic models. The methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. MAP sequence estimation is then performed using a classical dynamic programming technique applied to the discretised version of the state space. In contrast with standard approaches to the problem which essentially compare only the trajectories generated directly during the filtering stage, our method efficiently computes the optimal trajectory over all combinations of the filtered states. A particular strength of the method is that MAP sequence estimation is performed sequentially in one single forwards pass through the data without the requirement of an additional backward sweep. An application to estimation of a non-linear time series model and to spectral estimation for time-varying autoregressions is described.  相似文献   

13.
Reference growth curves estimate the distribution of a measurement as it changes according to some covariate, often age. We present a new methodology to estimate growth curves based on mixture models and splines. We model the distribution of the measurement with a mixture of normal distributions with an unknown number of components, and model dependence on the covariate through the weights, using smooth functions based on B-splines. In this way the growth curves respect the continuity of the covariate and there is no need for arbitrary grouping of the observations. The method is illustrated with data on triceps skinfold in Gambian girls and women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号