首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The present studies describe the systematic quality by design (QbD)‐oriented development and validation of a simple, rapid, sensitive and cost‐effective reversed‐phase HPLC bioanalytical method for nevirapine in rat plasma. Chromatographic separation was carried out on a C18 column using isocratic 68:9:23% v/v elution of methanol, acetonitrile and water (pH 3, adjusted by orthophosphoric acid) at a flow rate of 1.0 mL/min using UV detection at 230 nm. A Box–Behnken design was applied for chromatographic method optimization taking mobile phase ratio, pH and flow rate as the critical method parameters (CMPs) from screening studies. Peak area, retention time, theoretical plates and peak tailing were measured as the critical analytical attributes (CAAs). Further, the bioanalytical liquid–liquid extraction process was optimized using an optimal design by selecting extraction time, centrifugation speed and temperature as the CMPs for percentage recovery of nevirapine as the CAA. The search for an optimum chromatographic solution was conducted through numerical desirability function. Validation studies performed as per the US Food and Drug Administration requirements revealed results within the acceptance limit. In a nutshell, the studies successfully demonstrate the utility of analytical QbD approach for the rational development of a bioanalytical method with enhanced chromatographic separation and recovery of nevirapine in rat plasma. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A sensitive and rapid LC–MS–MS method was developed for the simultaneous determination of ebastine and carebastine in human plasma. Solid-phase extraction was used to isolate the compounds from the biological matrix followed by separation on a Symmetry C18 column under isocratic conditions. The mobile phase was 10 mM ammonium formate in water/acetonitrile (40:60, v/v). Detection was carried out using a triple-quadrupole mass spectrometer in positive electrospray ionization and multiple reaction monitoring mode. The method was fully validated over the concentration range of 0.1–10 ng mL?1 for ebastine and 0.2–200 ng mL?1 for carebastine in human plasma, respectively. The lower limit of quantification (LLOQ) was 0.1 ng mL?1 for ebastine and 0.2 ng mL?1 for carebastine. For ebastine and carebastine inter- and intra-day precision (CV%) and accuracy values were all within ±15% and 85–115%, respectively. The extraction recovery was on average 60.0% for ebastine and 60.3% for carebastine.  相似文献   

3.
《Analytical letters》2012,45(1):46-55
Abstract

A Chemiluminescence Enzyme‐Linked Immuno‐Sorbent Assay (CL‐ELISA) for determination and quantification of the fungicide thiram in honeybees was developed in an indirect competitive format. The assay was optimized by determining: the optimal coating conjugate concentration and anti‐thiram antiserum dilution, the effect of the incubation time on the competitive step, the tolerance to organic solvents. The IC50 and the limit of detection (LOD) values were 60 ng mL?1 and 9 ng mL?1, respectively, similar to those of colorimetric ELISA with a calibration range of 9–15,000 ng mL?1. Cross reactivity of some related compounds such as some dithiocarbamates, a thiocarbamate, the ethylenethiourea and the tetramethylthiourea were tested. The assay was then applied to honeybees sample extracts obtained by using the liquid‐liquid extraction or the graphitized carbon‐based solid phase extraction.

The calibration curves in honeybee extracts from liquid‐liquid procedure gave an IC50 of 141 ng mL?1 and a LOD of 17 ng mL?1. In case of extracts obtained by SPE these values were 139 ng mL?1 and 15 ng mL?1, respectively. The average recovery value from honeybee extracts spiked with 75 ng mL?1 of thiram was 72% for SPE, higher than for liquid‐liquid extraction (60%). On the opposite, when the honeybees were directly spiked with 2 and 10 ppm the average recovery was higher for liquid‐liquid extraction (54%), than for SPE (31%). Finally, the assay was applied to honeybee samples collected during monitoring activities in Italy and Russia.  相似文献   

4.
A simple and sensitive liquid chromatographic assay with fluorescence detection assay was developed for the determination of zearalenone levels in rat serum. The assay utilized a single liquid–liquid extraction with t-butyl methyl ether and isocratic elution using a mobile phase consisting of acetonitrile and 0.1% triethylamine in distilled water (pH = 6) (50:50, v/v). Linearity was observed over a concentration range from 10 to 1,000 ng mL?1 (r = 0.9995), with the limit of quantification at 10 ng mL?1 with 100 μL of rat serum. The validated assay was applied to a pharmacokinetic study in rats.  相似文献   

5.
In this work, a microextraction method, water-contained surfactant-based ultrasound-assisted, followed by high-performance liquid chromatography (HPLC) was developed for determination of five polycyclic aromatic hydrocarbons (PAHs) and benzene in commercial oil samples. During the microextraction method, a micellar solution as the only extraction solvent was injected into the oil sample in a conical bottom glass tube and formed a cloudy solution. The dispersion process was accelerated by applying ultrasound irradiation. Phase separation was done by centrifugation and then the lower sediment phase was directly analyzed by HPLC. A chemometrics approach was applied for the optimization of the extraction condition. Under the optimum conditions, the proposed method showed good linearity within the different ranges for different analytes (e.g., 0.10–200 ng mL?1 for phenanthrene), the square of the correlation coefficient was higher than 0.999 and the appropriate limit of detection was in the range of 0.04–0.41 ng mL?1. The recoveries in all cases were above 95 %.  相似文献   

6.
A simple, sensitive, and precise high performance liquid chromatographic method for the analysis of pantoprazole, rabeprazole, esomeprazole, domperidone and itopride, with ultraviolet detection at 210 nm, has been developed, validated, and used for the determination of compounds in commercial pharmaceutical products. The compounds were well separated on a Hypersil BDS C18 reversed-phase column by use of a mobile phase consisting of 0.05 M, 4.70 pH, potassium dihydrogen phosphate buffer - acetonitrile (720:280 v/v) at a flow rate of 1.0 mL min?1. The linearity ranges were 400–4,000 ng mL?1 for pantoprazole, 200–2,000 ng mL?1 for rabeprazole, 400–4,000 ng mL?1 for esomeprazole, 300–3,000 ng mL?1 for domperidone and 500–5,000 ng mL?1 for itopride. Limits of detection (LOD) obtained were: pantoprazole 147.51 ng mL?1, rabeprazole 65.65 ng mL?1, esomeprazole 131.27 ng mL?1, domperidone 98.33 ng mL?1 and itopride 162.35 ng mL?1. The study showed that reversed-phase liquid chromatography is sensitive and selective for the determination of pantoprazole, rabeprazole, esomeprazole, domperidone and itopride using single mobile phase.  相似文献   

7.
A simple liquid chromatographic method for the determination of gemifloxacin (CAS number 175463-14-6) in human plasma has been developed. An aliquot quantity of 1 mL plasma sample was taken and 0.1 mL internal standard was added and mixed. 1 mL methanol was added to it. The mixture was then sonicated for 10 min followed by 20 min centrifugation at 5000 rpm (g = 3600). The supernatant layer was separated and filtered through simple filtration unit (membrane filter, 0.45 μm) and injected into the LC system consisting of Hypersil BDS, C18 (250 × 4.6 mm, 5 μm particle size) column, using 1% formic acid : methanol = 65:35 (v/v) as mobile phase with ultra violet detection at 328 nm. Lower limit of detection was 20 ng mL?1 and lower limit of quantitation was 50 ng mL?1. Maximum between-run precision was 14.614%. Mean extraction recovery was found to be 87.32 to 89.32%. Stability study showed that after three freeze-thaw cycles the loss of three quality control samples were less than 10%. Samples were stable at room temperature for 12 h and at ?20 °C for 3 months. Before injecting into LC system, the processed samples were stable for at least 8 h. The method was used to perform bioequivalence study in human volunteers.  相似文献   

8.
《Analytical letters》2012,45(15):2421-2429
The quantification of lead in water samples is presented at the sub-ppb level through preconcentration with cloud point extraction (using Triton x-100 and eriochrome black T) and atomic absorption spectrometry with electrothermal atomization. In order to study the influence of several variables, experimental design analyses were carried out. Linearity was observed between 0.15 to 1.20 ng mL?1 (r = 0.98), with a detection limit of 0.04 ng mL?1 and a quantification limit of 0.15 ng mL?1. A mean recovery of 90 ± 9% (n = 6, P = 0.05) was found; at the precision was 9% expressed as the coefficient of variation. Anions and cations that were studied did not affect the recovery of lead. Water samples of different sources were analyzed directly as well as by the standard addition method; no statistical differences were found between the two procedures. Finally, the present methodology was compared with liquid–liquid extraction of the lead-ditizone complex, using green analytical indicators proposed for this purpose.  相似文献   

9.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry quantitative detection method, using amantadine as internal standard, was developed for the simultaneous analysis of paracetamol, pseudoephedrine and chlorpheniramine concentrations. Analytes were extracted from plasma samples by liquid–liquid extraction with n-hexane–dichloromethane–2-propanol (2:1:0.1, v/v), separated on a C18 reversed-phase column with 0.1% formic acid–methanol (40:60, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves for plasma were linear over the concentration range 10–10,000 ng mL?1 of paracetamol, 2–2,000 ng mL?1 of pseudoephedrine and 0.2–200 ng mL?1 of chlorpheniramine. The method has a lower limit of quantitation of 10 ng mL?1 for paracetamol, 2.0 ng mL?1 for pseudoephedrine and 0.2 ng mL?1 for chlorpheniramine. Recoveries, precision and accuracy results indicate that the method was reliable within the analytical range, and the use of the internal standard was very effective for reproducibility by LC-MS-MS. This method is feasible for the evaluation of pharmacokinetic profiles of a novel multicomponent sustained release formulation containing 325 mg of paracetamol, 30 mg of pseudoephedrine hydrochloride and 2 mg of chlorpheniramine maleate. It is the first time the pharmacokinetic evaluation of a novel sustained-action formulation containing paracetamol, pseudoephedrine and chlorpheniramine has been elucidated in vivo using LC-MS-MS.  相似文献   

10.
The present study developed a liquid-phase microextraction based on hollow fiber coupled with graphite furnace atomic absorption spectrometry for the effective extraction and quantitation of lead from urine and blood samples. A multivariate design was used for the optimization of the experimental conditions to ensure high extraction efficiency. Six factors (solvent type, chelating agent, time extraction, temperature, donor phase pH, and acceptor phase pH) were obtained by screening eleven factors of the Plackett–Burman design; these were optimized using the central composite design of response surface methodology. The optimum conditions of donor phase pH, acceptor phase pH, temperature, and extraction time were 5, 9.5, 40 °C, and 120 min, respectively. In addition, oleic acid containing dicyclohexyl-18-krone-6 was used for the membrane phase. Under optimal conditions, the enrichment factor, limit of detection, and limit of quantification were obtained in the ranges of 21.3–18.7, 0.001–0.002 ng mL?1, and 0.008–0.01 ng mL?1, respectively, in urine and blood samples. The linearity of the calibration curve was established for the concentration of Pb in the range of 1–50 ng mL?1 (r2?=?0.9983). Finally, the performance of the developed method was evaluated for the determination of lead in urine and blood samples, and satisfactory results were obtained (RSDs <?10% with recovery >?95).  相似文献   

11.
A sensitive LC–MS–MS method with electrospray ionization has been developed for determination of nikethamide in human plasma. After addition of atropine as internal standard, liquid–liquid extraction was used to produce a protein-free extract. Chromatographic separation was achieved on a 150 mm × 2.1 mm, 5 μm particle, Agilent Zorbax SB-C18 column, with 45:55 (v/v) methanol–water containing 0.1% formic acid as mobile phase. LC–MS–MS was performed in multiple reaction monitoring mode using target fragment ions m/z 178.8 → 107.8 for nikethamide and m/z 289.9 → 123.8 for the internal standard. Calibration plots were linear over the range of 20.0–2,000 ng mL?1. The lower limit of quantification was 20.0 ng mL?1. Intra-day and inter-day precisions were better than 4.2 and 6.1%, respectively. Mean recovery of nikethamide from human plasma was in the range 65.3–71.1%.  相似文献   

12.
《Analytical letters》2012,45(16):2643-2654
Dispersive liquid–liquid microextraction based on solid formation without a disperser combined with high-performance liquid chromatography has been developed for the determination of 4-tert-butylphenol, 4-n-nonylphenol, and 4-tert-octylphenol. This method is rapid, easy, and uses only 10 µL of a low toxicity organic solvent (1-hexadecanethiol) for the extraction solvent and no disperser solvent. The extraction time and centrifugation time require less than 10 min. The linear range was 1–500 ng mL?1 for 4-tert-butylphenol, 2–1000 ng mL?1 for 4-tert-octylphenol, and 5–500 ng mL?1 for 4-n-nonylphenol with r2 ≥ 0.9986. The detection limits were between 0.2 and 1.5 ng mL?1. The recoveries of lake and river water samples were in the range of 79% to 108%, and the relative standard deviations were 5% to 10%.  相似文献   

13.
A sensitive high performance liquid chromatographic (HPLC) method has been developed and validated for the simultaneous determination of four local anaesthetics: lidocaine, proparacaine, bupivacaine and oxybuprocaine. A full factorial design was used. The chromatographic separation was achieved using a Bondesil C8 (4.6 × 2.5 mm i.d., particle size 5 μm) analytical column. An optimised mobile phase consisted of acetonitrile and sodium dihydrogen phosphate (pH = 3.0, 20 mM) (30:70, v/v) at a flow rate of 1.2 mL min?1. Local anaesthetics detection was performed by UV-Vis detector at 220 nm. The retention times for lidocaine, proparacaine, bupivacaine and oxybuprocaine were 5.74, 9.28, 16.84 and 26.26 min, respectively. HPLC-UV-Vis method was linear in the range of 50–5,000 ng mL?1 for lidocaine and proparacaine and 100–5,000 ng mL?1 for bupivacaine and oxybuprocaine. The limit of detection (LOD) was 25 ng mL?1 for lidocaine, proparacaine and 30 ng mL?1 for bupivacaine and oxybuprocaine. The limit of quantification (LOQ) was found to be 50 ng mL?1 for lidocaine, proparacaine and 100 ng mL?1 for bupivacaine, oxybuprocaine. In intra-day and inter-day precision and accuracy analysis, the relative standard deviation was found to be less than 8%.  相似文献   

14.
A rapid and sensitive method based on magnetic solid-phase extraction coupled to high-performance liquid chromatography with ultraviolet detection was developed for the simultaneous determination of buprenorphine (BPN) and its major metabolite, norbuprenorphine (N-BPN), in human plasma samples. Poly (para-phenylenediamine)-modified Fe3O4 nanoparticles (PpPDA/Fe3O4) were synthesized and used as a magnetic adsorbent for the extraction and preconcentration of BPN and N-BPN in biological samples. The synthesized nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometery. An isocratic separation was achieved on a Nova-Pak C18 reversed-phase column using a mobile phase consisting phosphate buffer (pH 3.4) and acetonitrile (50:50, v/v) at a flow rate of 1.0 mL min?1. The detection was conducted at 280 nm. Under the optimum conditions, the calibration curves for BPN and N-BPN were linear in the ranges 3.0–150.0 and 1.0–120.0 ng mL?1, respectively. The sensitivity was also high with limit of detection of 0.8 and 0.3 ng mL?1 for BPN and N-BPN in plasma, respectively. The method was successfully applied to the extraction and determination of BPN and N-BPN in human plasma samples with an average recovery of 98.10 and 96.41%, respectively.  相似文献   

15.
Ate&#;  Z.  &#;zden  T.  &#;zilhan  S.  Eren  S. 《Chromatographia》2007,66(1):119-122

A simple, rapid, sensitive and selective method for the analysis of indapamide in human plasma, utilizing ultra performance liquid chromatography (UPLC), has been developed and validated to satisfy FDA guidelines for bioanalytical methods. The analyte and the internal standard, sulfamethazine, were isolated from plasma samples by liquid–liquid extraction with diethyl ether. Separation was performed with an Acquity C18 column. The gradient composition of mobile phase was composed of acetonitrile and sodium dihydrogenphosphate buffer (adjusted to pH 3.33 with 85% o-phosphoric acid) at a flow rate of 0.5 mL min−1. The assay exhibited a linear dynamic range of 1–100 ng mL−1 for indapamide in human plasma. The limit of quantification (LOQ) was 1 ng mL−1. The method was successfully applied to the pharmacokinetic and bioequivalence studies of indapamide formulations.

  相似文献   

16.
《Analytical letters》2012,45(3):466-475
A Chemiluminescent Enzyme-Linked Immuno-Sorbent Assay (CL-ELISA) for determination and quantification of the fungicide imidacloprid in honeybees was developed in an indirect competitive format. The assay was optimized by determining: the optimal coating conjugate concentration and anti-imidacloprid antiserum dilution, the effect of the incubation time on the competitive step, and the tolerance to organic solvents. The IC50 and the limit of detection (LOD) values were 14.8 ng mL?1 and 0.11 ng mL?1, respectively, similar to those of colorimetric ELISA with a calibration range of 0.1–2600 ng mL?1. Cross reactivity of some related compounds such as three imidacloprid metabolites, 6-chloro nicotinic acid, 5-hydroxy-imidacloprid, and imidacloprid olefin, and one other chloronicotinoid insecticide, acetamiprid, were tested. The assay was then applied to honeybee extracts obtained by using the liquid-liquid extraction. The calibration curves in honeybee extracts from the liquid-liquid procedure gave an IC50 of 23.7 ng mL?1 and a LOD 1.6 ng mL?1. The average recovery value from honeybee extracts spiked with 100 and 1000 ng mL?1 of imidacloprid were 73% and 76%, respectively. Finally, the assay was applied to honeybee samples collected during monitoring activities in Italy; it was found that only five of the 27 samples were positives, with low concentrations of imidacloprid ranging between 1.2 and 15.4 ng g?1.  相似文献   

17.
A simple, sensitive and rapid ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method was developed and validated for the quantification of mitragynine in rat plasma using amitriptyline hydrochloride as an internal standard. Sample preparation involved a one-step liquid?Cliquid extraction using methyl t-butyl ether. Mitragynine was separated on an Acquity UPLC? BEH HILIC column using isocratic elution with a mobile phase of 10 mM ammonium formate buffer containing 0.1% formic acid:acetonitrile (15:85, v/v). At a flow rate of 0.2 mL min?1, the retention time of mitragynine was found to be 1.3 min. Ionization was performed in the positive ion electrospray mode. The selected mass-to-charge (m/z) ratio transition of mitragynine ion [M + H]+ used in the selected ion recording (SIR) was 399.1. The calibration curve was found to be linear over a concentration range of 1?C5,000 ng mL?1 (r = 0.999) with a lower limit of quantification (LLOQ) of 1 ng mL?1. Intra- and inter-day assay variations were found to be less than 15%. The extraction recoveries ranged from 85?C93% at the three concentrations (2, 400 and 4,000 ng mL?1) in rat plasma. This method was successfully used to quantify mitragynine in rat plasma following intravenous administration of the compound.  相似文献   

18.
A sensitive and specific assay based on liquid chromatography with ultraviolet detection was developed for the simultaneous determination of pirfenidone (PFD), a novel antifibrotic agent, and its carboxylic acid metabolite in human plasma. The carboxylic acid metabolite was further identified by mass spectrometric analysis. PFD, its carboxylic acid metabolite and the internal standard methyl-p-aminobenzoate were extracted from plasma by a simple one-step liquid-liquid extraction with ethyl acetate and subsequently separated on a Zorbax SB-C18 column with a mobile phase of trifluoroacetic acid–triethylamine–acetonitrile–water (0.1:0.15:28:71.75, v/v/v/v) and monitored at 314 nm. Extraction recovery was over 70% in plasma. The calibration curves were linear over the concentration range of 0.05–25 μg mL?1. The limit of detection (LOD) and lower limit of quantitation (LLOQ) in human plasma were 10 and 50 ng mL?1, respectively. Intra- and inter-assay precision of the method were within 8.6%. The accuracy as expressed by the bias ranged between ?4.5 and 4.0%. The method was successfully applied to determine pharmacokinetic parameters of PFD and its carboxylic acid metabolite after a single oral dose of 200 mg of PFD in healthy volunteers.  相似文献   

19.
Determination of trace uranyl ions was performed by using mixed micellar system and spectrophotometric determination. The method is based on cloud point extraction of uranyl ions after formation of an ion-association complex in the presence of Celestine Blue and sodium dodecyl sulfate. Then, the formed complex was extracted to non-ionic surfactant phase of Triton X-114 at pH 8.0. The optimal extraction and reaction conditions (e.g. concentrations and types of surfactants, concentration of complex forming agent, incubation conditions) were studied and analytical characteristics of the method (e.g. limit of detection, linear range, pre-concentration factor) were obtained by experimental studies. Linearity was obeyed in the range of 50–1,500 ng mL?1 for uranium(VI) ion and the detection limit of is 14.20 ng mL?1. The interference effects of common ions were also tested and validation studies were performed by using recovery test. The method was applied to the determination of uranium(VI) in several real samples.  相似文献   

20.
The aim of the study was to compare two kinds of extraction of cortisol from human saliva. The first was made with dichloromethane and the second by solid-phase extraction. Saliva was sampled in the evening into plastic tubes then cortisol was extracted and analyzed by LC with detection at 240 nm. The limit of detection was 1 ng mL?1 for extraction with dichloromethane and 3 ng mL?1 for SPE extraction. Both methods of extraction were applied to the analysis of saliva samples without any interference peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号