首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the rapidly evolving multidisciplinary field of polymer therapeutics, tailored polymer structures represent the key constituent to explore and harvest the potential of bioactive macromolecular hybrid structures. In light of the recent developments for anticancer drug conjugates, multifunctional polymers are becoming ever more relevant as drug carriers. However, the potentially best suited polymer, poly(ethylene glycol) (PEG), is unfavorable owing to its limited functionality. Therefore, multifunctional linear copolymers (mf‐PEGs) based on ethylene oxide (EO) and appropriate epoxide comonomers are attracting increased attention. Precisely engineered via living anionic polymerization and defined with state‐of‐the‐art characterization techniques—for example real‐time 1H NMR spectroscopy monitoring of the EO polymerization kinetics—this emerging class of polymers embodies a powerful platform for bio‐ and drug conjugation.  相似文献   

2.
A series of multiblock poly(ether urethane)s comprising poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. Their aqueous solutions exhibited thermogelling behavior at critical gelation concentrations (CGC) ranging from 8 to 12 wt%. The composition and structural information of the copolymers were studied by GPC and 1H NMR. The critical micellization concentration (CMC) and thermodynamic parameters for micelle formation were determined at different temperatures. The temperature response of the copolymer solutions were studied and found to be associated with the composition of the copolymers.  相似文献   

3.
4.
叶酸和聚乙二醇接枝作基因载体用壳聚糖的合成与表征   总被引:3,自引:0,他引:3  
本研究将叶酸和聚乙二醇接枝到四种不同分子量的壳聚糖氨基侧链上,以改善壳聚糖的靶向性和水溶性作基因载体。用FTIE、1HNMR、UV-Vis、DSC和TEM对产物进行了表征,结果表明,叶酸和聚乙二醇被成功地接枝到壳聚糖上,所制得的载体有望作为潜在的肿瘤细胞靶向基因载体。  相似文献   

5.
设计合成了梳形聚(聚乙二醇甲醚丙烯酸酯)(PPEGA)及其与聚乙二醇(PEG)的嵌段共聚物(PEG-b-PPEGA).通过与高分子量左旋聚乳酸(PLLA)和右旋聚乳酸(PDLA)共混探究了PEG不同的结构对PLA立构复合体系(sc-PLA)结晶的影响.结果 表明线形PEGA和PEG能与sc-PLA完全相容,两者均能促进...  相似文献   

6.
A new process for acetic acid production by direct oxidation of ethylene   总被引:2,自引:0,他引:2  
A new process for acetic acid production by direct oxidation of ethylene which was established and commercialized is described. The catalyst system consisting of Pd and heteropoly acid exhibits excellent activity and selectivity. The addition of Se or Te to the catalyst system is effective to suppress the formation of carbon dioxide. This new process is applicable to a plant of a wide range of size corresponding to the local demand. Because this new process produces little waste water, it is very friendly to the environment.  相似文献   

7.
Poly(ethylene glycol) (PEG) blends photo-curable and thermal activated shape-memory polymers (SMPs), with different activation temperature (Tswitch), have been synthesized and characterized. PEG blends with different molecular weights were chain-end functionalized with isocyanate ethyl methacrylate and photo-cured with UV lamp. Degree of cross-linking of the blend network, determined by gel content measurement, resulted as higher than 95%. The thermal and thermomechanical properties of these SMPs PEG blends were characterized by differential scanning calorimetry and dynamic mechanical analysis. The shape-memory properties of the networks were quantified using thermomechanical three-point bending experiments and showed strain fixity rates higher than 99% and a minimum strain recovery ratio of 82%.  相似文献   

8.
采用界面自由基聚合的方法,制备了以聚二甲基丙烯酸乙二醇酯(PEGDMA)为壁材,薄荷素油(DPO)与石蜡或者三辛癸酸甘油酯(GTCC)的混合物为芯材的微胶囊.微胶囊壁材是二甲基丙烯酸乙二醇酯(EGDMA)单体通过界面自由基聚合形成的高聚物PEGDMA.提出了该界面自由基聚合形成PEGDMA的机理过程.利用光学显微镜和扫描电镜探究了乳化剂类型、芯材组成和固化温度对微胶囊形貌的影响.用傅里叶红外光谱对微胶囊的化学结构进行了表征.利用紫外分光光度计测出了未被微胶囊包埋的芯材占总芯材的百分比(free oil).并用热重分析仪分析了微胶囊的热稳定性能,讨论了固化时间对微胶囊热性能的影响.结果表明,采用阿拉伯树胶为乳化剂,芯材组成为质量比M_(DPO)/M_(GTCC)=1∶1,在60℃下固化1 h,制备出的微胶囊为饱满的球形状,表面光滑.同时测得该体系中芯材的free oil为26.5 wt%.PEGDMA微胶囊在60℃固化温度下反应3 h,具有很好热稳定性,且固化温度升高能提高微胶囊的热稳定性.所制备的微胶囊无毒,在个人护理品和医药领域具有广泛的应用前景.  相似文献   

9.
Summary: A methacrylate‐functionalized poly(ethylene glycol) macromonomer was copolymerized at the surface of methacrylate‐derivatized maghemite nanoparticles. After silylation of the magnetic core with methacryloxypropyltrimethoxysilane, two grafting procedures based on either a direct copolymerization reaction in water or an inverse emulsion polymerization were compared. A direct copolymerization led to low polymer surface amounts, whereas an inverse emulsion process allowed nanocomposite particles containing up to 90 wt.‐% polymer to be obtained.

TEM picture of maghemite‐PEG hybrid particles.  相似文献   


10.
A biocompatible complex has been prepared as gene carrier via electrostatic interaction, which is composed of a polycation, that is, poly[(dimethylamino)ethyl methacrylate] end-capped with cholesterol moiety (Chol-PDMAEMA30), along with a polyanion named poly(aspartic acid)-grafted-poly(ethylene glycol) (PASP-g-PEG). The complexes have less cytotoxicity compared to the case of alone Chol-PDMAEMA30 or branched polyethylenimine (PEI) system.

In the present study, biocompatible complexes have been prepared as gene carrier via electrostatic interaction, which is composed of a polycation, that is, poly[(dimethylamino)ethyl methacrylate] end-capped with cholesterol moiety (Chol-PDMAEMA30), along with a polyanion named poly(aspartic acid)-grafted-poly(ethylene glycol) (PASP-g-PEG). We first synthesized polysuccinimide (PSI) via condensation polymerization of aspartic acid, and then used PEG-NH2 to react with the partial pentacyclic rings of PSI to yield a kind of graft copolymer polysuccinimide-grafted-poly(ethylene glycol) (PSI-g-PEG). After hydrolysis of the residual succinimide units, a new biodegradable and biocompatible graft copolymer PASP-g-PEG was prepared successfully. Chol-PDMAEMA30 was synthesized via oxyanion-initiated polymerization, as reported in our previous literature. We investigated the interactions between every pair among calf thymus DNA, Chol-PDMAEMA30, and PASP-g-PEG by agarose gel retardation assay. The results indicate that the prepared complexes could completely bind DNA and may become more stable during systemic circulation. The complexes have less cytotoxicity compared to the case of alone Chol-PDMAEMA30 or branched polyethylenimine (PEI) system. Furthermore, the physicochemical properties of the complexes were also investigated by zeta potential, transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. These biodegradable and biocompatible polymeric carriers have potential applications in gene delivery.  相似文献   

11.
Silver nanoparticles of 23 nm size were formed by chemical reduction of silver nitrate in excess of aqueous sodium borohydride. To examine the aggregation behavior in NaCl solutions, they were coated with poly(diallyldimethylammonium chloride), poly(allylamine hydrochloride) and poly(ethylene glycol) by layer‐by‐layer assembly. Silver nanoparticles coated with PDADMAC of both high and low molecular weight revealed the lowest stability independent of salt concentration. Silver nanoparticles coated with PAH and PEG are stable in 0.1 or 0.01 M NaCl, whereas addition of 0.5 M NaCl destroys the colloidal solution. The destruction of silver agglomerates and the increase of monodispersity in the case of PEG coated silver nanoparticles were observed after heating at 90 °C. In contrast, uncoated silver nanoparticles readily agglomerate and precipitate even after heating at 65 °C.

  相似文献   


12.
This article reports our discovery that poly(ethylene glycol) (PEG) can quantitatively be functionalized by transesterification using Candida antarctica lipase B (Novozyme 435) as the catalyst. α‐ω telechelic PEG‐methacrylates and PEG‐acetates were successfully prepared using commercially available PEGs with both narrow and broad molecular weight distribution. 1H and 13C NMR together with MALDI‐TOF mass spectroscopy verified the expected structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3024–3028, 2008  相似文献   

13.
采用液相多肽合成方法, 成功制备得到窄分子量分布、结构确定的聚乙二醇嵌段共聚四代树枝状聚赖氨酸 (MPEG-block-DPL4). 在此基础上, 进一步将其DPL4的端氨基转化为端肼基, 并通过其与抗肿瘤药物阿霉素(DOX) C=O的反应形成C=N键, 实现在DPL4表面的阿霉素药物分子化学结合, 最终得到新型pH敏感性的高分子药物MPEG-block-DPL4-CONHN=DOX. 运用紫外分光光度(UV-Vis)法, 对MPEG-block-DPL4-CONHNH2与阿霉素的负载效率进行了定量分析. 高分子药物MPEG-block-DPL4-CONHN=DOX在生理条件(pH=7.4)下相对稳定, 而弱酸性条件(pH=4.5, 5.5)下, C=N键能较快水解, 释放阿霉素药物分子. 体外细胞毒性评价结果表明(细胞株SMMC-7721和SPCA-1), 所得新型高分子药物MPEG-block-DPL4-CONHN=DOX的细胞毒性显著地低于游离阿霉素药物分子, 因此, 可进一步研究发展成为新型pH敏感性可控缓释高分子抗肿瘤药物载体体系.  相似文献   

14.
Summary: New polymer gelators consisting of poly(propylene glycol) or poly(ethylene glycol) and L ‐lysine‐based low‐molecular‐weight gelators have been developed. These polymer gelators were synthesized according to a simple procedure with high reaction yield, and formed organogels in many organic solvents. The organogelation mechanism was proposed from the transmission electron microscopy and FTIR spectroscopy studies.

Structures of the polymer gelators synthesized here.  相似文献   


15.
林旭锋  王彦广 《有机化学》2005,25(10):1157-1166
随着组合化学的迅速发展, 兼容固相合成和溶液相合成优点的液相合成方法已成为实现组合化学的一条重要途径. 综述了近年来聚乙二醇为可溶性聚合物载体支载的杂环化合物库的研究, 并展望了其今后的发展方向.  相似文献   

16.
Poly(ethylene glycol) (PEG)‐based films, nanotubes, and nanotube arrays were successfully made using layer‐by‐layer (LbL) assembly ion‐containing PEO derivatives on porous templates and planar substrates. PEG nanotubes are challenging to produce because PEG dissolves into solutions and solvents used during nanotube processing, but our techniques circumvent the issue. Nanotube dimensions were verified using microscopy and the average observed diameter was 155 nm. The PEG‐based structures showed remarkable stability in water, salt water, and sodium hydroxide solution.

  相似文献   


17.
The influence of major parameters of ethylene glycol oxidation to glyoxal on a silver catalyst on catalyst coking has been studied. On the basis of experimental data obtained, methods decreasing the coking have been suggested.  相似文献   

18.
A new discovery describing nonionic surfactant poly(ethylene glycol) being added into deionized water, electrical conductivity of the water would show a remarkable increase phenomenon. The mechanism study indicated that the electrical conductivity increase of the water doped some PEG was formed by super-polarization of a PEG molecule on the water molecule. A PEG molecule can form a super polarization body in the water, which will generate a strong polarization effect on the water molecule, thereby increasing water ionization degree and makes the electrical conductivity of water greater.  相似文献   

19.
在绿色反应介质聚乙二醇中,PdCl2/CuCl2催化体系可以顺利地催化1-辛炔发生环三聚反应,区域选择性地生成1,3,5-三己基苯,该反应产率较高,对环境友好,且催化体系可以适当地重复使用.  相似文献   

20.
As a new type of topological poly(ethylene glycol) (PEG) analogue, a series of polygonal PEGs with digonal to hexagonal structures were developed. Polygonal PEGs with structures between the digonal and tetragonal types showed molecular‐level dispersion in water at 20 °C, whereas the pentagonal and hexagonal PEGs aggregated, which is suggestive of enhanced hydrophobicity by ring expansion. Heating induced conformational changes in the polygonal PEGs and increased their hydrophobicity. Among the polygonal PEGs, only the trigonal and hexagonal PEGs showed a distinct thermal response to form and increase the size of the aggregates, respectively. Given that tetragonal and pentagonal PEGs only marginally responded to heat treatment, the thermal responses are likely due to a topological effect. At low temperatures, the larger polygonal PEGs are more restricted despite the expanded rings. The trigonal PEG showed the largest change in mobility, whereas the tetragonal PEG exhibited the smallest change. Hence, the topology of the polygonal PEGs influences the intramolecular packing and the local dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号