首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Pure component selectivity analysis (PCSA) was successfully utilized to enhance the robustness of a partial least squares (PLS) model by examining the selectivity of a given component to other components. The samples used in this study were composed of NH4OH, H2O2 and H2O, a popular etchant solution in the electronic industry. Corresponding near-infrared (NIR) spectra (9000-7500 cm−1) were used to build PLS models. The selective determination of H2O2 without influences from NH4OH and H2O was a key issue since its molecular structure is similar to that of H2O and NH4OH also has a hydroxyl functional group. The best spectral ranges for the determination of NH4OH and H2O2 were found with the use of moving window PLS (MW-PLS) and corresponding selectivity was examined by pure component selectivity analysis. The PLS calibration for NH4OH was free from interferences from the other components due to the presence of its unique NH absorption bands. Since the spectral variation from H2O2 was broadly overlapping and much less distinct than that from NH4OH, the selectivity and prediction performance for the H2O2 calibration were sensitively varied depending on the spectral ranges and number of factors used. PCSA, based on the comparison between regression vectors from PLS and the net analyte signal (NAS), was an effective method to prevent over-fitting of the H2O2 calibration. A robust H2O2 calibration model with minimal interferences from other components was developed. PCSA should be included as a standard method in PLS calibrations where prediction error only is the usual measure of performance.  相似文献   

2.
A non-separative, fast and inexpensive spectrofluorimetric method based on the second order calibration of excitation-emission fluorescence matrices (EEMs) was proposed for the determination of carbaryl, carbendazim and 1-naphthol in dried lime tree flowers. The trilinearity property of three-way data was used to handle the intrinsic fluorescence of lime flowers and the difference in the fluorescence intensity of each analyte. It also made possible to identify unequivocally each analyte. Trilinearity of the data tensor guarantees the uniqueness of the solution obtained through parallel factor analysis (PARAFAC), so the factors of the decomposition match up with the analytes. In addition, an experimental procedure was proposed to identify, with three-way data, the quenching effect produced by the fluorophores of the lime flowers. This procedure also enabled the selection of the adequate dilution of the lime flowers extract to minimize the quenching effect so the three analytes can be quantified. Finally, the analytes were determined using the standard addition method for a calibration whose standards were chosen with a D-optimal design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号