首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study explains the role of surface modification of constituent materials on composite material performance. The influence of silane and nano-hybrid coatings on mechanical properties of basalt fibers and composite materials on their base was investigated. Infrared spectroscopy indicated that modification of basalt fiber surface and nano-SiO2 was successfully applied. The surface modification leads to the significant increase in the tensile strength of basalt fibers compared to the non-coated fibers. The tensile strength of silane-treated fibers was established 23% higher than the non-coated fibers, indicating that silane plays a critical role in the strength retention of basalt fibers. Also it was pointed out that silane coupling agents can be used for the preparation of the nano-hybrid coating. Addition of SiO2 nanoparticles into the fiber surface was incorporated to enhance the interfacial bonding of basalt fiber reinforced epoxy composite.  相似文献   

2.
《Composite Interfaces》2013,20(2):131-137
The mechanical and tribological behavior of gamma irradiated poly(p-phenylene benzobisoxazole) (PBO) fiber filled polytetrafluoroethylene (PTFE) composites was investigated. The gamma irradiated PBO fiber composite had the highest inter-laminar shear strength value of all the combinations because its higher bond strength may have hindered a large fiber/matrix debonding. X-ray photoelectron spectroscopy results indicate that the contents of polar groups on the surface of gamma irradiated PBO fiber increase compared to PBO fiber. The wear tests were conducted on a ring-on-block apparatus using composite block against polished metal counterparts under dry sliding conditions. It can also be found that gamma irradiation treatment was helpful to the improvement of the anti-wear ability of the PTFE composite which was related to the abrasive wear mechanism.  相似文献   

3.
A series of composites with Twaron fabric as reinforcement and polytetrafluoroethylene (PTFE) as matrix were fabricated with various contents of PTFE, viz. 30, 40, 50, 60, and 70 vol%. The Rockwell hardness and tensile strength of the composites were tested according to the corresponding standards. The composites were also evaluated for their tribological behaviors on an MPX-2000A friction and wear tester. The worn surface and wear debris of the composites were observed by scanning electron microscopy (SEM) and the mechanism is discussed. The PTFE content in the composites had a great influence on both the mechanical and tribological properties. The composite with 40 vol% PTFE provided the proper wetting of the fibers and the best load transfer efficiency and, hence, showed the best mechanical properties and tribological behaviors.  相似文献   

4.
25%, 50%, and 75% polyphenylene sulfide (PPS) long fiber reinforced PPS resin were prepared by a hot pressing method. Neat resin PPS and PPS fiber samples were also prepared to compare with the self-reinforced PPS composites. The reinforcing fibers were preheat treated at 240°C for 24 h. The tribological properties of the self-reinforced PPS composites against an AISI 1045 steel ring were determined by a block on ring type friction tester. Differential scanning calorimetry (DSC) results indicated that a higher degree of crystallinity was retained in the self-reinforced PPS composites than in neat PPS resin after hot pressing. Therefore, the addition of PPS fiber improved both the mechanical and tribological properties of PPS resin significantly. Dynamic mechanical analysis (DMA) demonstrated that the PPS fibers increased the glass transition temperature (Tg) of the PPS resin. SEM images of the fracture surfaces indicated that the toughness of the samples increased with increasing PPS fiber content. Additionally, PPS fibers improved the tribological properties of PPS resin by significantly reducing the friction coefficient and wear rate.  相似文献   

5.
Abstract

It is important to optimize the properties of a material for a particular application, hence, to find the suitable material for tribological applications, the wear and friction behaviour of AA5052 in situ composites with different kind of reinforcements have been investigated. For present study, three in situ formed composites have been produced with different reinforcements namely Al3Zr, ZrB2 and combination of both (Al3Zr + ZrB2) by direct melt reaction (DMR) technique. The as-cast composites and base alloy have been characterized by X-ray diffraction (XRD), optical microscopy, electron microscopy, tensile testing, hardness and dry sliding wear and friction tests. XRD results indicate the successful formation of second phase reinforcement particles in all composites. Wear test results indicate that the cumulative volume loss increases with an increase in sliding distance while coefficient of friction shows a fluctuating tendency, whereas with increasing applied load, wear rate shows an increasing trend while coefficient of friction shows decreasing trend. The variation of wear rate with composites indicates that the composite with multiple reinforcement (Al3Zr + ZrB2) has lowest wear rate among all as-cast composites and base alloy, while coefficient of friction is higher. The responsible mechanisms concerned with wear and friction results have been discussed in detail with the help of the observation on worn surface analysis by scanning electron microscope (SEM) and 3D-profilometer. All tribological results have been correlated with the microstructural properties, strength parameters and bulk hardness of the composites.  相似文献   

6.
《Composite Interfaces》2013,20(2):171-205
Sisal fibers have been used for the reinforcement of polypropylene matrix. The compatibilization between the hydrophilic cellulose fiber and hydrophobic PP has been achieved through treatment of cellulose fibers with sodium hydroxide, isocyanates, maleic anhydride modified polypropylene (MAPP), benzyl chloride and by using permanganate. Various fiber treatments enhanced the tensile properties of the composites considerably, but to varying degrees. The SEM photomicrographs of fracture surfaces of the treated composites clearly indicated the extent of fiber–matrix interface adhesion, fiber pullout and fiber surface topography. Surface fibrillation is found to occur during alkali treatment which improves interfacial adhesion between the fiber and PP matrix. The grafting of the fibers by MAPP enhances the tensile strength of the resulting composite. It has been found that the urethane derivative of polypropylene glycol and cardanol treatments reduced the hydrophilic nature of sisal fiber and thereby enhanced the tensile properties of the sisal–PP composites, as evident from the SEM photomicrographs of the fracture surface. The IR spectrum of the urethane derivative of polypropylene glycol gave evidence for the existence of a urethane linkage. Benzoylation of the fiber improves the adhesion of the fiber to the PP matrix. The benzoylated fiber was analyzed by IR spectroscopy. Experimental results indicated a better compatibility between benzoylated fiber and PP. The observed enhancement in tensile properties of permanganate-treated composites at a low concentration is due to the permanganate-induced grafting of PP on to sisal fibers. Among the various treatments, MAPP treatment gave superior mechanical properties. Finally, experimental results of the mechanical properties of the composite have been compared with theoretical predictions.  相似文献   

7.
Thermomechanical ceramics have interesting properties: mainly high hardness, high wear resistance, good chemical resistance, good mechanical strength at high temperatures and generally low thermal conductivity. But, the engineering use of ceramics as structural parts is at the moment limited by their inherent brittleness. The toughness values of ceramics are between about to 5 MPa √m whereas the toughness values of metals are much higher (from 20 to 200 MPa √m). To avoid this brittleness, composite ceramics have to be used. Two types of composite materials can be developed: particle-reinforced composites and fiber-reinforced composites. In this paper, some examples of reinforcement of ceramics are presented. Two cases will be developed: second-phase reinforcement with zirconia particles or other particles, and the composites reinforced by fibers or whiskers.  相似文献   

8.
Mechanical and tribological properties of multilayers with nanometer thickness are strongly affected by interfaces formed due to mismatch of lattice parameters. In this study, molecular dynamics (MD) simulations of nanoindentation and following nanoscratching processes are performed to investigate the mechanical and tribological properties of Ni/Al multilayers with semi-coherent interface. The results show that the indentation hardness of Ni/Al multilayers is larger than pure Ni thin film, and the significant strength of Ni/Al multilayers is caused by the semi-coherent interface which acts as a barrier to glide of dislocations during nanoindentation process. The confinement of plastic deformation by the interface during nanoscratching on Ni/Al multilayers leads to smaller friction coefficient than pure Ni thin film. Dislocation evolution, interaction between gliding dislocations and interface, variations of indentation hardness and friction coefficient are studied.  相似文献   

9.
Functionalized multiwalled carbon nanotubes were successfully deposited on carbon fibers using four different techniques including dip coating, hand layup, spray up and electrophoretic deposition (EPD). A uniform coating of nanotubes was achieved from EPD in comparison to other coating techniques. Later nanotube-coated fibers by EPD were introduced in epoxy resin to investigate interfacial mechanical properties of the developed hierarchical composites by vacuum bagging technique. The increases in flexural and interlaminar shear properties up to 15% and 18% were observed in composites containing nanotube-coated carbon fibers than composites with virgin carbon fibers, respectively. Microscopic observation revealed the proper impregnation of multiscale reinforcements, i.e., carbon fibers and carbon nanotubes, in resin along with the modification of fiber/matrix interface due to the presence of nanotubes at interface. Finally, the mechanisms for improved mechanical properties were identified along with the presentation of a schematic model for better understanding of the improved performance of hierarchical composite after depositing uniformly dispersed nanotubes on carbon fibers.  相似文献   

10.
Coir/silk fiber-reinforced polypropylene (PP) based unidirectional composites (40 wt.%) were manufactured by compression molding. Coir/silk fibers and PP sheets were treated with ultraviolet radiation at different intensities and then composites were fabricated. It was found that mechanical properties of irradiated silk/irradiated PP composites were found to increase significantly compared to the untreated ones and even higher than that of irradiated coir/irradiated PP composites. Soil degradation tests indicated that irradiated coir/irradiated PP composites significantly lost much of its mechanical properties, but irradiated silk/irradiated PP composites retained their strength of its original integrity. Scanning electron microscopy and water uptake of both types of composites were also investigated.  相似文献   

11.
A new method of silane treatment of nanoclays is reported where in the clay is nanodispersed in hydrolyzed silanes. The surface functionalization of Cloisite® 15A nanoclay has been carried out using two different silane coupling agents: 3-aminopropyltriethoxy silane and 3-glycidyloxypropyltrimethoxy silane using varied amounts of silane coupling agents, e.g. 10, 50, 200, and 400 wt% of clay. The surface modification of Cloisite® 15A has been confirmed by Fourier transform infrared spectroscopy. The modified clays were then dispersed in epoxy resin, and glass fiber-reinforced epoxy clay laminates were manufactured using vacuum bagging technique. The fiber-reinforced epoxy clay nanocomposites containing silane modified clays have been characterized using small angle X-ray scattering, transmission electron spectroscopy and differential scanning calorimetry. The results indicate that the silane treatment of nanoclay aided the exfoliation of nanoclay and also led to an increase in mechanical properties. The optimized amount of silane coupling agents was 200 wt%. The nanocomposites containing clay modified in 200 wt% of silanes exhibited an exfoliated morphology, improved tensile strength, flexural modulus, and flexural strength. The improved interfacial bonding between silane modified nanoclays and epoxy matrix was also evident from significant increase in elongation at break.  相似文献   

12.
喻利花  马冰洋  曹峻  许俊华 《物理学报》2013,62(7):76202-076202
通过非平衡磁控溅射的方法制备了不同V含量的(Zr,V)N复合薄膜, 采用EDS, XRD, XPS, 纳米压痕仪和摩擦磨损仪等对薄膜的化学成分、微结构、力学性能及摩擦性能进行了研究. 结果表明, V的加入虽未改变ZrN的fcc晶体结构, 但使薄膜的择优取向由ZrN的(200)面转变为(Zr,V)N的(111)面. 随着V含量增加, (Zr,V)N复合膜的硬度略有升高后缓慢降低, 并在含25.8 at.%V后迅速降低. 与此同时, 薄膜的常温摩擦系数亦有小幅降低. 高温摩擦研究表明, (Zr,V)N薄膜在300 ℃时出现V2O3, V2O5 在500 ℃后形成, 其含量也随温度的提高而增加. 薄膜的摩擦系数因V2O5 的形成而得到显著降低. 关键词: (Zr,V)N 薄膜 微结构 力学性能 摩擦性能  相似文献   

13.
Al-based composites reinforced by icosahedral (i-) Al59Cu25.5Fe12.5B3 quasicrystalline particles were prepared by solid-state sintering. It was found that Al diffusion from the matrix to the quasicrystalline particles induces phase transformation into the ω-Al7Cu2Fe tetragonal phase. In order to preserve the i phase, we used an oxidation pre-treatment of the particles and studied its influence on the kinetics of the phase transformation (Al + i → ω) as a function of temperature by high energy X-ray diffraction. The oxide layer acts as a barrier, reducing efficiently the diffusion of Al up to a sintering temperature of 823 K, allowing the control of the phases in the composites. The mechanical properties and the friction behaviour of the composites were investigated and show the negative influence of the oxide on the interface strength.  相似文献   

14.
Polyphenylene sulfide (PPS) fiber materials, whose raw fibers had been heat treated previously for 1 to 5 days, were prepared by a hot-pressing method. The tribological properties of PPS resin and fiber materials against an AISI 1045 steel ring were evaluated using a block-on-ring wear tester. The results showed that the sample whose raw fibers had been heated at 240°C for 1 day (S1) exhibited the highest impact strength as well as the lowest friction coefficient and wear rate. The friction coefficient of S1 was 39% lower than that of the PPS resin material, and its wear rate was 1 to 2 orders of magnitude lower than those of the other samples. DSC analysis results indicated that the condensed structure of the samples gradually changed from the crystalline to the amorphous state with the increase of heat-treatment time of the raw fibers. DMA and DSC analysis results proved that severe, oxidative cross-linking reactions occurred when the raw fibers were heated over 3 days. It is concluded that proper heat treatment of the raw fibers is advantageous to improve the degree of crystallinity and appropriate oxidative cross-linking; therefore, the prepared PPS fiber material can exhibit better mechanical and tribological performances.  相似文献   

15.
Sisal fiber (SF) is a good raw material to prepare natural fiber composites (NFCs) by blending it with plastics. However, most NFCs are highly filled with natural fibers in order to decrease the cost of products that causes the weak interfacial compatibilities between the natural fibers and polymers. To successfully prepare a high-performance NFC, the interfacial compatibility is the key problem that should be disposed. In this paper, the graft copolymers of polyethylene (GPE) were used as the infiltrative compatibilizers for SF-filled recycled polyethylene (rPE) composites. How GPE affected the interfacial compatibility and performances of rPE/SF composites were investigated. Results show that the mechanical properties, water resistance and thermal stability of the composites increased with the increase in GPE. The improved interfacial interactions restrained the movement of rPE chains, resulting in the decreasing of crystallinity of the composites. GPE were favorable to improve the rheological properties of the composites. The scanning electron microscopy observation discovered that GPE promoted the formation of infiltrative interfacial interactions that primarily came from the chemical and physical interactions between SF and GPE.  相似文献   

16.
Fiber-reinforced polymer (FRP) composites are increasingly becoming suitable and durable materials in the repair and replacement of traditional metallic materials. The built-in promise of performance assurance and retention of structural integrity in harsh and hostile environments of these materials certainly offers an alternative and attractive avenue for a wider range application to explore its potential to the zenith. The toughest challenge faced by material scientists is to assess and ascertain its behavioral log in a range of loading rates. The heterogeneity and responses of multiple distinct phases to varying loading conditions are most often complex and far away from comprehensive conclusion. Furthermore, composites with common structural polymer matrices quite often absorb moisture during service period. Then, FRPs become a much more complex system to comprehend its sensitivity to experimental variation. The present article emphasizes the need for understanding this perpetual problem of FRPs which might pose a threat to its prospects.  相似文献   

17.
Compactness and large energy conversion capacity are the main reasons of development of sophisticated ceramics materials in microfibers form, which are prepared for high-speed multiferroic systems and devices. These multifunctional composite applications are owing to coupling of electrical and magnetic properties, as well as additional thermal and mechanical properties. So that, they are suitable for magnetic sensors, electrically tunable non-linear transducers, and non-volatile memories. In our experiment, the thin fibers ceramics have been produced using special environmental chamber where the high temperature sintering can be protected by controlling such parameters as temperature and sintering atmosphere. Consequently, for these purposes structural and physical properties, preparation and thermal synthesis of micrometer sized lead lanthanum zirconate titanate (PLZT) fibers were investigated thoroughly. Since the phase transition properties of PLZT fibers differ much, the production process of fibers suffers from lack of proper high temperature control. Consequently, our experiments should help to eliminate this drawback, so that various technological conditions, parameters, and subsequent sintering atmosphere with different mixtures of PbO and ZrO were experimentally tested. Final conclusions include comparative analysis of obtained PLZT fibers ferroelectric phase transition properties to specific sintering atmosphere.  相似文献   

18.
Silicon carbide nanoparticles (nano-SiC), in the amounts of 0, 3, and 5 parts per hundred of rubber (phr), were employed in a butadiene rubber (BR) based compound as a potential commercial rubber and the structure, mechanical, tribological and thermal properties of the samples were investigated. The use of 3 phr of nano-SiC, especially in the presence of silane, increased the crosslink density and improved the tensile strength (35%) and elongation at break (64%) of the BR. In addition; the abrasion resistance of the BR was improved about 120% and the coefficient of friction increased. Scanning electron microscopy (SEM) images revealed the use of silane resulted in an appropriate dispersion of the nano-SiC and improvement of its interaction with the matrix. The use of nano-SiC, especially with silane, increased the initial thermal decomposition temperature of the BR and decreased its rate of degradation.  相似文献   

19.
The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 × 1028 m−3), density (maximally 1.16 g cm−3), and tear strength (11.2 kN m−1), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.  相似文献   

20.
Abstract

The mechanical properties and the electrical and thermal conductivity of composites based on an epoxy polymer (EP) filled with dispersed copper (Cu) and nickel (Ni) were studied. It was shown that the electrical conductivity of the composites demonstrated percolation behavior with the values of the percolation threshold being 9.9 and 4.0?vol.% for the EP-Cu and EP-Ni composites, respectively. Using the Lichtenecker model, the thermal conductivity of the dispersed metal phase in the composites, λf, was estimated as being 35?W/mK for Cu powder and 13?W/mK for Ni powder. It was shown that introduction of the filler in EP led to a decrease in the intensity of the mechanical loss tangent (tan δ) peak that was caused by the existence of an immobilized polymer layer around the filler particles which did not contribute to mechanical losses. Using several models the thickness of this layer, ΔR, was estimated. The concept of an “excluded volume” of the polymer, Vex, i.e. the volume of the immobilized polymer layer, which does not depend on the particle size and is determined solely by the value of the interaction parameter, B, was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号